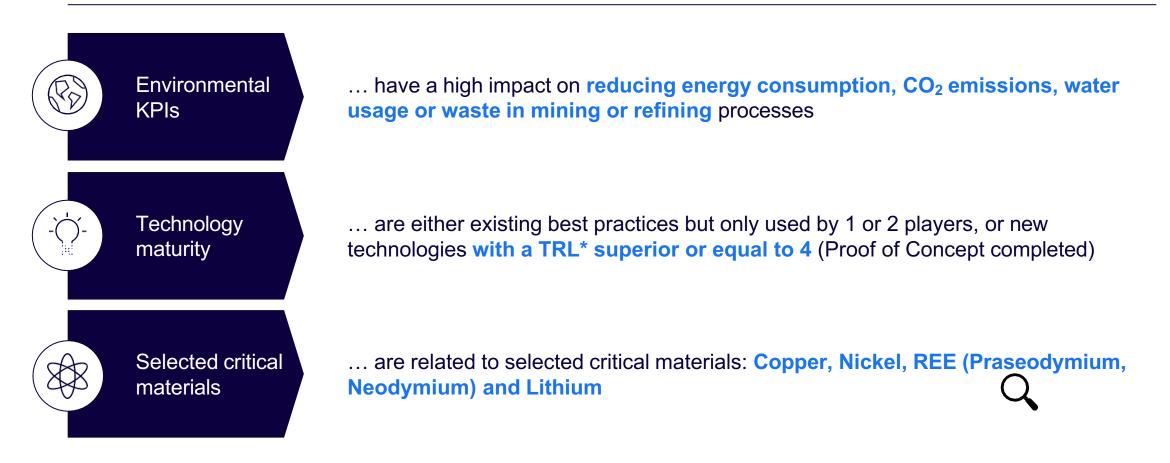
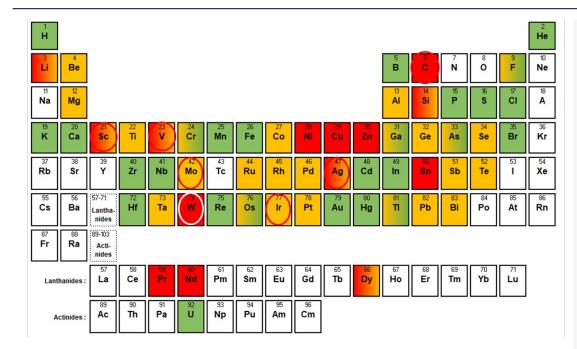
Technologies for Sustainable Mining and Refining

Facts & Figures – WMF 2024

JULY 11TH 2024



ARTHURELITTLE


Purpose of the study: Identify the most promising technologies that could improve the environmental impact of mining and refining in the coming years

Identify the technologies that...

Ni, Cu, Pr, Nd, Li are some of the most critical materials in terms of environmental impact

2024 Criticality Assessment WMF

Red elements combine:

- Role in electrification & energy transition
- Long term uncertainties
- Short term supply chain bottlenecks
- Limited substitution
 possibilities
- Very high degree of risk High probability of risk
- occurrence
- Risk of occurrence to be closely monitored
- Low probability of risk occurrence

Low degree of risk

Elements in Scope

Five of the most critical elements, especially for electrification, are selected within the scope of our study

More critical in 2024: 6 elements – High-purity Graphite (C), Tungsten, Sc, V, Ag, Mo

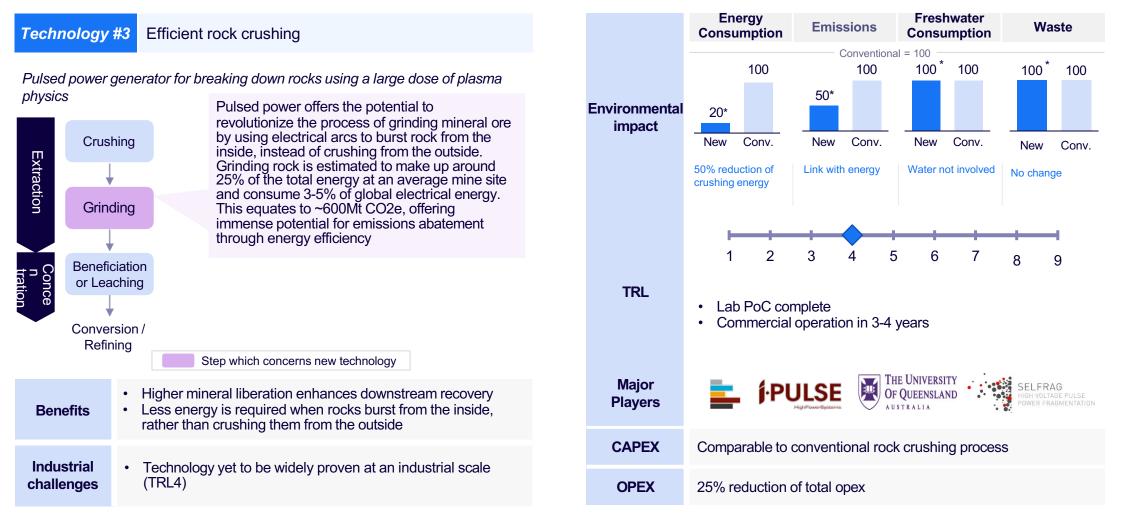
Less critical in 2024: None

While mature technologies exist to reduce CO₂ emissions and water usage, new technologies are needed for reducing energy consumption and production of waste

		Current	Production	Environmental impact						
		production Process	Volume	Energy consumption	CO ₂ En Energy	nissions Process	Freshwater consumption**	Waste		
			kt metal, 2021	GJ/t metal	tCO ₂ /t	t metal	m³/t metal	t/t metal		
N	li	Pyrometallurgy from Sulphide	789	114	9	9 0		65		
	ss 1)	Hydrometallurgy from Laterite (HPAL)	197	194	12 8		303	351		
~	•	Pyrometallurgy from Sulfide	17,000	65	5	0.1	91	96		
	u	Hydrometallurgy from Oxide	4,000	35	2	0	70	125		
DEE	Pr	Hydrometallurgy from mixed	11	510	17	2†	114	10,870		
REE	Nd	Oxide	35	419	16	2†	89	2,440		
	:	Brine Process	256*	62*	1*	2*	23*	24*		
	.i	Hard Rock Process	319*	203*	19*	2*	76*	34*		
			ergy emissions ca uced by using gro		Freshwater c can be reduc water	High 201~ Medium 51~200 Low 1~50				

Note: (*) Tonnage metal indicates tonnage of Lithium Carbonate (LCE), not that of Lithium metal; (**) Freshwater consumption does not take into account recycled water; (†) High level estimation Sources: IEA, CSIRO, Eurometaux, Journal of Cleaner Production (Norgate, 2007), CDA (Dresher, 2001), Hindawi (Koltun, 2014), Argonne, Arthur D. Little analysis

We have selected 10 breakthrough technologies for ultra-low Mining Footprint


		Technology		Environmental impact (Relative to incumbent process)				TRL	Applica	CAPEX*		Major Players		
				Energy	Emission	Water	Waste		bility	(\$/tpa)	(\$/t)			
		1	AI Resource imaging	-15%	-15%	0%	-50%	8	No major limitation	Marginal	Savings on a case-by- case basis			
Tra	nsverse	2	Dry stack tailings	+10%	0%	-75%	-10%	9	No major limitation	Comparable to incumbent	200-600			
		3	Efficient rock grinding	-80%	-50%	0%	0%	4	No major limitation	Comparable to incumbent	-25% of incumbent			
		4	Nickel sulfide pressure oxidation	-10% -50%	-50%	+100%	-15%	8	No major limitation	60k	11k	VALE		
nts	Ni	5	Nickel rock bioleaching	-50%	-65%	+350%	-15%	8	Bio compatibility	21k	10k	FINNISH MINERALS GROUP SUOMEN MALMIJALOSTUS		
elements	Cu	6	Copper in-situ leaching	-50%	-50%	-70%	-95%	8	Well- fractured rocks	4k	4k			
	Cu	7	Copper sulfide leaching	-50%	-50%	-50%	-95%	8	No major limitation	40k	3k	JETTI nuton® Gycladex		
Specific to	REE (Pr, Nd)	8	REE Efficient Separation	-15%	-10%	-5%	0%	6	No major limitation	5k	8-16k	USA/Rare Earth のでのので、 USA/Rare Earth のでので、 USA/Rare Carth		
Spe		9	Direct Lithium extraction	-25%	-10%	+200%	-90%	8	Sufficient conc. of Li	32k [†]	3k†			
	Li	10	Lithium un-calcinated rock leaching	-60%	-60%	-85%	-85%	6	No major limitation	21k ^{††}	2-4k ^{††}	CYCLADEX Lithium Australia		

Note: (*) Sum of CAPEX divided by tones of metal per year. Figures show typical values but highly depend on deposit quality; (**) USD per ton of metal; Transverse: indicates additional OPEX by deploying technology; Specific to elements: OPEX of whole process by replacing existing technology. Figures show typical values but highly depend on deposit quality; (†) USD/ton LiOH • H₂O; (††) USD/ton Lithium Carbonate (LCE), Sources: Arthur D. Little analysis

Strong positive impact Strong negative impact 5

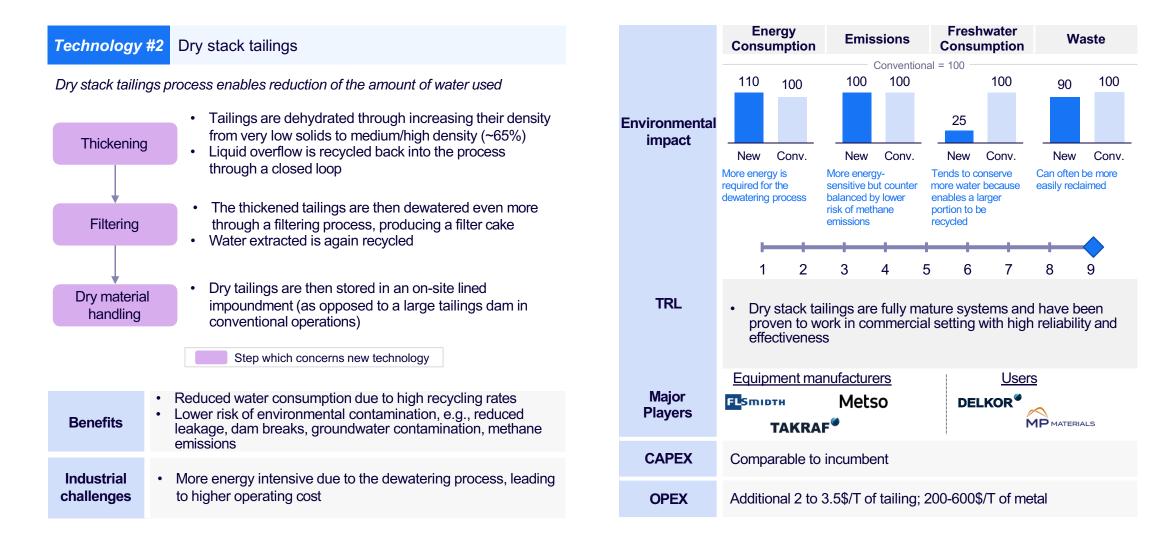


Illustration #1 : Efficient rock grinding could save up to 80% in energy consumption

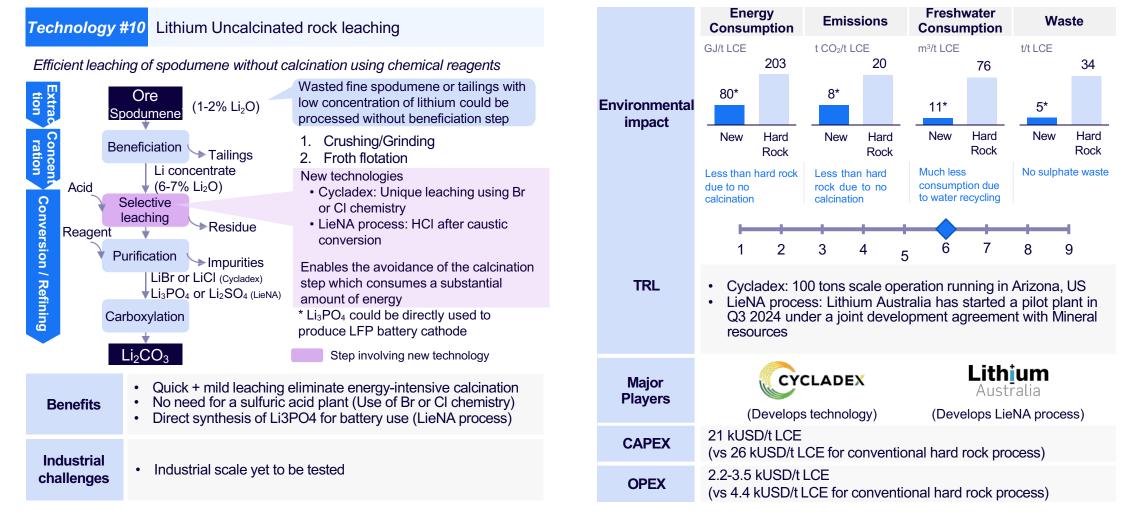


Illustration #2 : Dry Stack Tailings allows reduction of water usage by up to 75%

Illustration #3 : Lithium leaching of uncalcinated rock allows up to 60% energy reduction and 85% waste reduction

Note: (*) High level estimation, waste can be used as a by-product in construction with limited cement addition (similar to steel slags) Sources: Press search, Lithium Australia, Cycladex, Arthur D. Little analysis

Applying these new technologies would drastically lower down the environmental impact of mining and refining

		i	Environme	ntal impact	i		Environmental impact			
	Current production Process	Energy consumption	CO ₂ Emissions	Freshwater consumption	Waste	New production Process	Energy consumption	CO ₂ Emissions	Freshwater consumption	Waste
		GJ/t metal	tCO₂/t metal	m³/t metal	t/t metal		GJ/t metal	tCO₂/t metal	m³/t metal	t∕t metal
Ni (Class	Pyrometallurgy	114	9	68	65	Sulfide pressure oxidation	86	4	22	35
1)	from Sulfide	114	9	00	00	Nickel Ore bioleaching	46	2	77	32
Cu	Pyrometallurgy from Sulfide	65	5.1	91	96	Copper sulfide leaching	22	2	11	3
Cu	Hydrometallurgy from Oxide	35	2	70	125	In-situ leaching	13	1	5	3
R Pr	Hydrometallurgy	510	19 [†]	114	10,870	Hydrometallurgy (Sx-Ew) with	346	16	28	6,850
E E Nd	from mixed Oxide	419	20†	89	2,440	efficient separation	285	15	21	1,540
	Brine Process	62*	3*	23*	24*	DLE	39	2	18	1
Li	Hard Rock Process	203*	21*	76*	34*	Uncalcinated rock leaching	77	7	3	3

Note: (*) Tonnage metal indicates tonnage of Lithium Carbonate (LCE), not that of Lithium metal; (**) Freshwater consumption does not take into account recycled water; (†) High level estimation Sources: IEA, CSIRO, Eurometaux, Journal of Cleaner Production (Norgate, 2007), CDA (Dresher, 2001), Hindawi (Koltun, 2014), Argonne, Arthur D. Little Analysis

ARTHUR

Victoire de Margerie Founder & Vice Chairman of the World Materials Forum Arnaud Jouron Partner jouron.arnaud@adlittle.com +33 6 10 55 56 41 Mitsuru Nakamura Consultant nakamura.misuru@adlittle.com +81 70 4026 4987

Vincent Bamberger Managing Partner