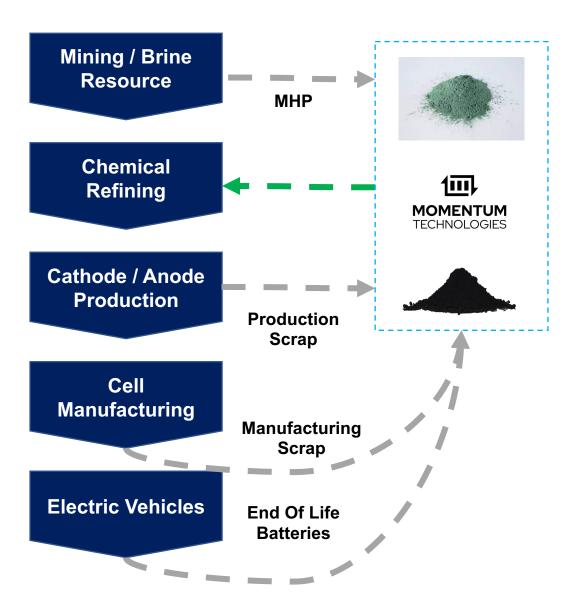
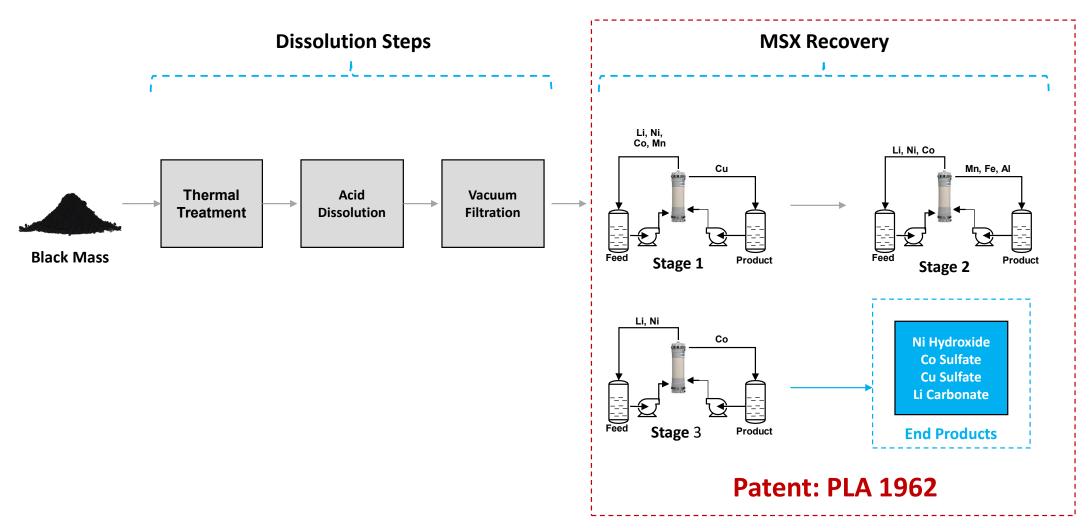
Morld Materials Forum

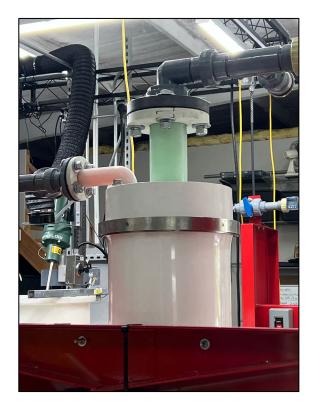
July 2023

Overview

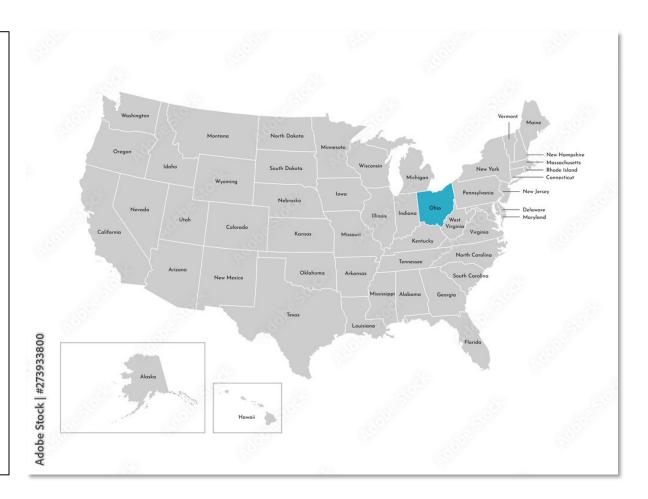
Momentum provides a scalable, sustainable, commercially-attractive critical materials processing technology to gigafactories, electronics recyclers and high-end metals manufacturers to help satisfy the mounting demand for critical minerals and metals around the globe.




Our Place in the Value Chain



Start-to-Finish (Visual)



Plant #1+

- Permitting and engineering have begun for Plant #1 in Ohio
- Momentum received a \$7.5M grant from the US
 Bipartisan Infrastructure Law w/ Cirba Solutions & 6K
- Operations start in Q1 2024 to process 1,000 t/yr
- Plants #2 and #3 are in the pipeline for US & Europe

Differentiated Technology = Superior Outcome

Technology	MSX (Momentum)	Pyrometallurgy / Smelting	Hydrometallurgy
Capital Costs	Low capital intensity that can scale in line with customers existing volumes	High capital intensity	High capital intensity and requires specialized equipment
Operating Costs	Low energy requirementLocated at / near customerHigh variable cost structure	Power intensive and high fixed costs	Large facility leads to high fixed cost structure
Chemistry Flexibility	 Applicable to any battery chemistry 	Applicable to any battery chemistry	 Applicable to any battery chemistry
Recoveries & Product Purity	 High recoveries ~95% Metals ready to be re-used in cathode manufacturing 	Low recoveries ~50%Tend not to recover lithium	 Recoveries in the 85-95% range Metals have potential for being reused in cathode manufacturing
Environmental Impact	 Lowest emissions by virtue of being located near customer, significantly lower power + chemical usage 	 Requires high temperatures and large amounts of energy Expensive gas clean-up to avoid toxic flue gas emissions 	 Emissions for logistical requirements, pre-processing, energy consumption, and leaching chemicals

Call to Action

Our call to action is to increase the global e-waste recycling rate from its current 17% to an ambitious 35% by 2030. Achieving this objective requires a unified approach, focusing on the following key areas:

1. Role of Governments:

- 1. Reclassify the regulations around the transportation of black mass to remove its hazardous waste classification.
- 2. Expedite permit issuance for recycling plants processing critical materials.
- 3. Incentivize

2. Role of Original Equipment Manufacturers (OEMs):

1. OEMs must accept responsibility for the afterlife of their products. For instance, returning waste should be as effortless as shipping used Nespresso coffee pods back to Nestle.

3. New Process Technologies:

- 1. Explore innovative technologies can significantly increase the material available for use in electronics, such as Momentum's MSX (TRL 8)
- 2. Discontinue research on old ideas that have been looked at again and again
- 3. Financially support or make introductions to companies, funds, and accelerators for technologies that are at Technology Readiness Level (TRL) 4 or higher.

By harnessing the power of OEMs, adopting new technologies, fostering partnerships, and enforcing effective government regulations, we can collaboratively make significant strides towards our target.

