Toward viable industrial solutions

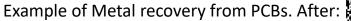
URBAN MINING OF SPENT CRITICAL METALS FROM WEEE

Nicolas Charpentier,^{1,2} Fabien Olivier,^{1,2} Xia Dong,² Alex Yan Qingyu², <u>J.-C. P. Gabriel</u>,^{1,2}

jean-christophe.gabriel@cea.fr

¹ CEA ² NTU/SCARCE

8 Mn€


12 Mn€

E-Wastes a Problem?

- 53.6 Mt (Million Metric Tonnes) in 2019 (74.7 Mt by 2030) Worldwide, Asia (24.9 Mt), the Americas (13.1 Mt) and Europe (12Mt)¹
- Only 17.4% collected & properly recycled; Many metals < 1%

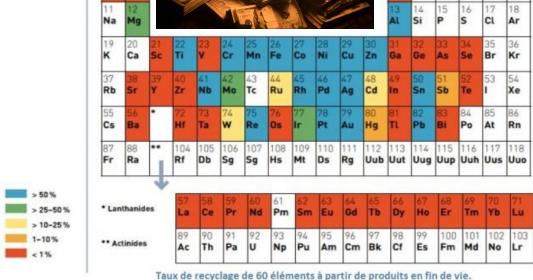
~	52	Ω	Fif	fحا	to	wers
\sim	JJ	UU	LII	וכו	LUI	NCIO

Facility	Location	Process Overview	Main metals recovered	Capacity (kt/year)
Aurubis smelter	Lünen, Germany	Black copper processing, electrorefining, and precious metal refining	Ag, Au, Cu, Pb, Sn, Zn	300 (only a fraction is e-waste)
Noranda smelter	Quebec, Canada	Feeding of e-waste to a copper smelter (14% of the total throughput). Upgrading in converter and anode furnaces. Electrorefining for metal recovery.	Ag, Au, Cu, Ni, Pd, Pt, Se, Te	100
Boliden Rönnskar smelter	Skelleftehamn, Sweden	Reactor smelting, copper refining and purification, and precious metal refining	Ag, Au, As, Bi, Cu, In, Ir, Ni, Pb, Pd, Pt, Rh, Ru, Sb, Se, Sn	120
Umicore smelter	Hoboken, Belgium	Smelting, copper leaching, electrowinning, and precious metal refining	Ag, As, Au, Bi, Cu, In, Ir, Ni, Pb, Pd, Pt, Rh, Ru, Sb, Se, Sn	350
DOWA Group smelter	Kosaka, Japan	Smelting, copper refining, and precious metal refining	Ag, Au, Bi, Cu, Ni, Pb, Sb, Sn, Te	150

Best is 16 metals out of 60+ in PCBs

- ¹ Global E-Waste Monitor 2020, UN
- ² Allied Market Research 2020

Including Fiberglass


and Epoxy

E-Wastes a Problem?

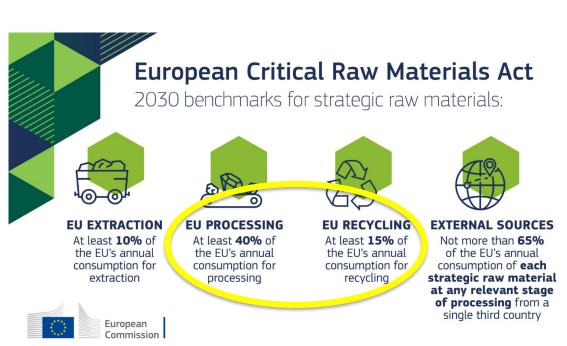
- □ 53.6 Mt (Million Metric Tonnes) in 2019 (74.7 Mt by 2030) Worldwide, Asia (24.9 Mt), the Americas (13.1 Mt) and Europe (12Mt)¹
- ☐ Only 17.4% collected & properly recycled; Many metals < 1%
- Ewaste Management Market estimated at \$50 Bn in 2020 (\$145 Bn in 2028)²
- ☐ Environmental concern and Global Warming Contributor

≈ 5300 Fiffel towers

(UNEP - 2011 - Recycling rates of metals - Graedel et al.)

¹ Global E-Waste Monitor 2020, UN

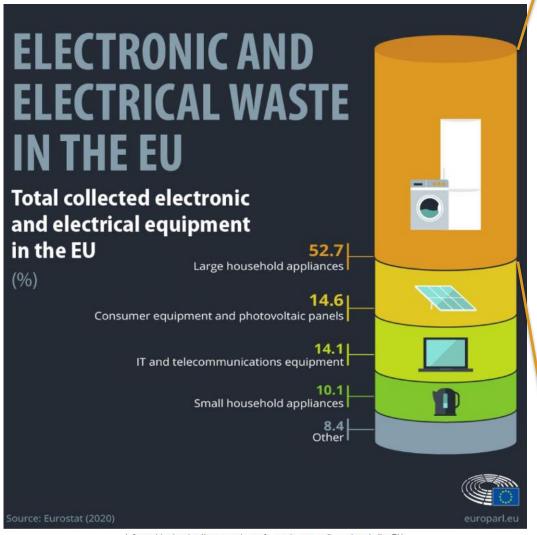
² Allied Market Research 2020



E-Wastes a Problem?

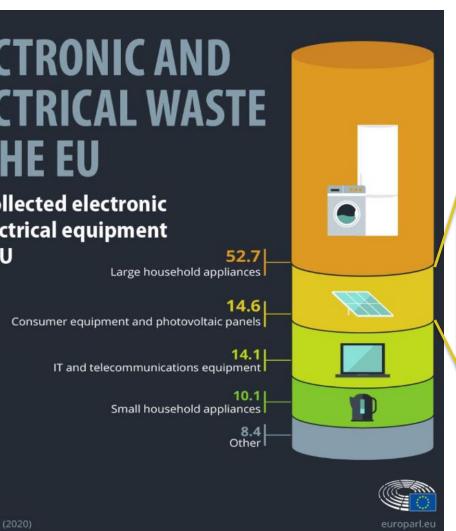
- □ 53.6 Mt (Million Metric Tonnes) in 2019 (74.7 Mt by 2030) Worldwide, Asia (24.9 Mt), the Americas (13.1 Mt) and Europe (12Mt)¹
- ☐ Only 17.4% collected & properly recycled; Many metals < 1%
- □ Ewaste Management Market estimated at \$50 Bn in 2020 (\$145 Bn in 2028)²
- Environmental concern and Global Warming Contributor:

≈ 5300 Eiffel towers


- ¹ Global E-Waste Monitor 2020, UN
- ² Allied Market Research 2020

Where can what be found?

	cor	erage material mposition of large me appliances:	Air	Dishwashers	Dryers
ı		Acrylonitrile Butadiene Styrene	-	1,2%	4,7%
ı		Aluminium	2,0%	0,25%	3,6%
ı		Concrete	-	4,0%	-
ı		Copper	21,9%	1,3%	3,8%
ı		Copper + Aluminium	-	0,02%	0,01%
ı		Electronics	2,4%	1,7%	2,8%
ı		Glass	-	-	0,10%
ı		Polystyrene	-	0,22%	0,68%
ı		Polyamide	-	0,25%	0,15%
ı		Polycarbonate	-	0,23%	0,13%
ı		Polyethylene	-	0,36%	-
ı		Polypropylene	-	10,2%	14,1%
ı		Polyurethane Foam	-	0,35%	-
ı		Polyvinyl Chloride	-	0,82%	0,17%
		Stainless steel	-	17,3%	8,5%
		Steel	45,1%	41,6%	52,0%
		Other plastics	20,3%	5,8%	7,0%
1		Other	8,3%	14,4%	2,4%
١	34	Source: UNU-VIE SCYCLE calculations based on CECED members input, EuP st			

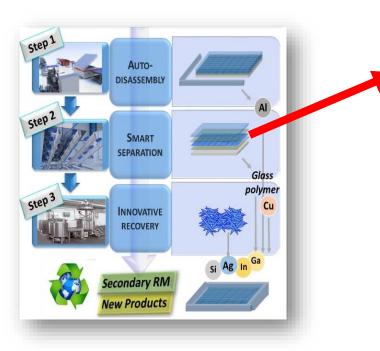

Infographic showing the percentage of e-waste per appliance type in the EU

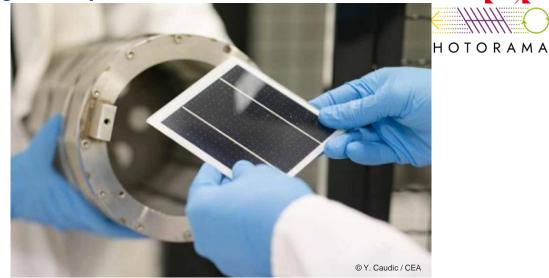
cea

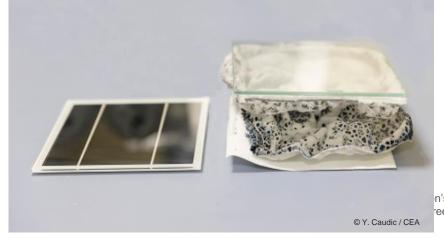
Where can what be found? Photovoltaic

Material	Quantity	Unit	(wt/wt)
Glass, containing antimony (0.01-1 %/kg of glass)	700	kg	70 %
Aluminium frame	180	kg	18 %
Copper connector	10	kg	1 %
Polymer-based adhesive (EVA) encapsulation layer	51	kg	5.1 %
Back-sheet layer (based on polyvinyl fluoride)	15	kg	1.5 %
Silicon metal solar cell	36.5	kg	3.56 %
Silver	0.53	kg	0.053 %
Aluminium, internal conductor	5.3	kg	0.53 %
Copper, internal conductor	1.14	kg	1.14 %
Various metal (tin, lead)	0.53	kg	0.053 %
Total	1 000	kg	100 %

Paiano, A., Renewable and Sustainable Energy Reviews 41, 2015, 99.


To recover beyond Al / SiO₂: Delamination

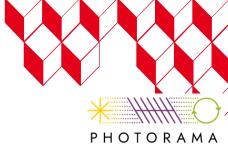

Infographic showing the percentage of e-waste per appliance type in the EU

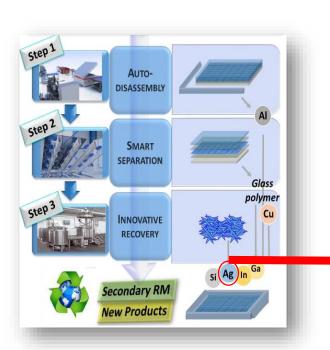

INNOVATIVE PROCESS? PHOTORAMA EU PROJECT

Axel Briand, Lucas Liotaud, Antoine Leybros, Agnès Grandjean

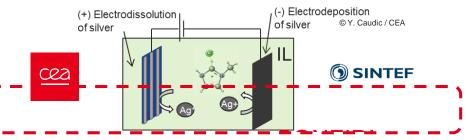
Rapid Expansion ScCO₂

Glass **EVA** Si Ag **PVF**


n's Horizon reement No 958223.



INNOVATIVE PROCESS? PHOTORAMA EU PROJECT

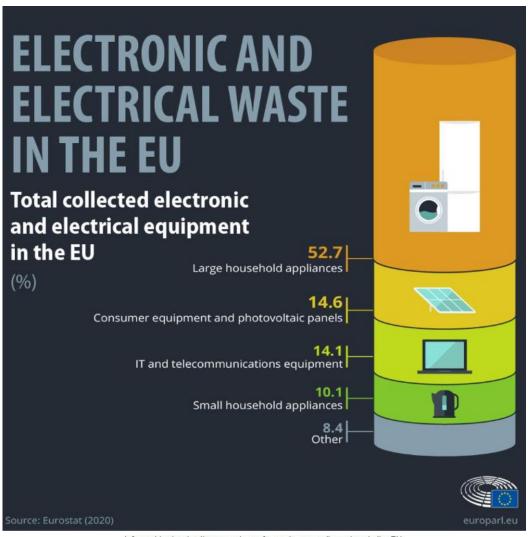

Axel Briand, Lucas Liotaud, Antoine Leybros, Agnès Grandjean

Innovative recovery of Ag in 1 step: electrolixiviation/electrodeposition

Electrodissolution - Electrodeposition

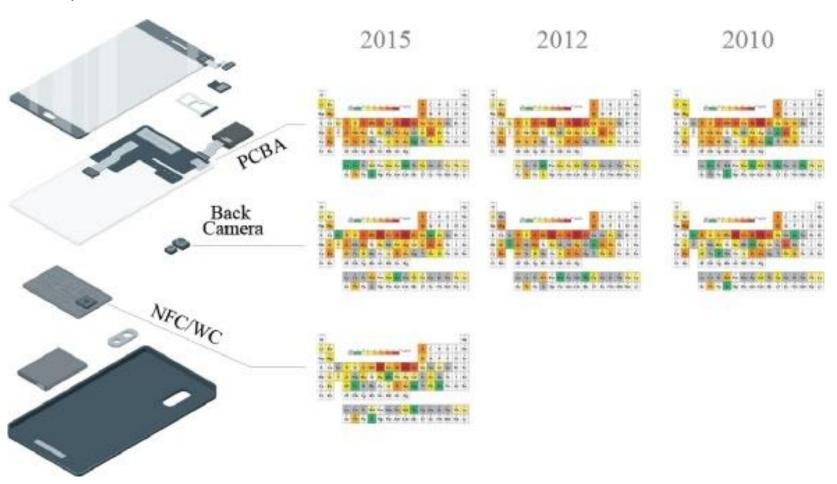
Objective: Production of 1 kg/day of silver metal
Pilot line development LuxChemtech

Method based on Green Solvent & Recyclability: Use of Deep Eutectic Solvent (DES)


- ✓ Low cost and environment impact, non-harmful and easy to make
- ✓ Stable mixture of components at their eutectic points
- ✓ Good conductivity and excellent solubility for silver chloride

Where can what be found? IT & Telecom

Infographic showing the percentage of e-waste per appliance type in the EU



Where can what be found? IT & Telecom

Example: Smart Phones

O. Tantawi, I. Hua, Resources, Conservation and Recycling, 175, 105886 (2021)

Where can what be found? IT & Telecom

- PCBs = ~6-8 wt% of WEEEs
- High Variability: Space / Time / Value
- Little known detailed composition
- No standard protocols for analysis
- Empirical valuation
- => Challenge = Valuation / Analysis / Sorting

Highest Techno approach: Optical recognition + Laser disassembly + Robotic picking

Florian Sauer et al.: Recovery of Tantalum from Printed Circuit Boards - An overview of the IRETA Project

Recovery of Tantalum from Printed Circuit Boards

An Overview of the IRETA Project

Florian Sauer, Bum-Ki Choi, Gesa Beck, Mathias Wickleder

- Higly selective
- 0,3 s / EC
- High CAPEX (Laser + Robotic arm)
- Partial solution

Whole PCB disassembly

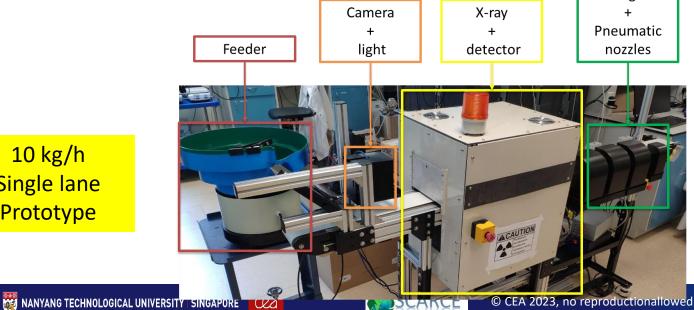
Disassembly

+ Bare boards (Cu, Au, Fiber glass & epoxy)

+ Solder (with or without lead)

Highest Techno approach: Optical recognition + Laser disassembly + Robotic picking

Florian Sauer et al.: Recovery of Tantalum from Printed Circuit Boards - An overview of the IRETA Project


Recovery of Tantalum from Printed Circuit Boards

An Overview of the IRETA Project

Florian Sauer, Bum-Ki Choi, Gesa Beck, Mathias Wickleder

- Higly selective
- 0,3 s / EC
- **High CAPEX (Laser +** Robotic arm)
- **Partial solution**

Whole PCB disassembly + Advanced/Fast sorting of all Ecs (optical + ME-Xray) Sorting bins

10 kg/h Single lane **Prototype**

13

Highest Techno approach: Optical recognition + Laser disassembly + Robotic picking

Florian Sauer et al.: Recovery of Tantalum from Printed Circuit Boards - An overview of the IRETA Project


Recovery of Tantalum from Printed Circuit Boards

An Overview of the IRETA Project

Florian Sauer, Bum-Ki Choi, Gesa Beck, Mathias Wickleder

- Higly selective
- 0,3 s / EC
- High CAPEX (Laser + Robotic arm)
- Partial solution
- Whole PCB disassembly + Advanced/Fast sorting of all Ecs (optical + ME-Xray)

Results obtained on 14 kg batch of wasted PCBs: Bare PCB (Cu+FG+Au)+Solder+ loose ECs)

- 10-5 mm ECs
 - Accuracy: 96.4 %
- 5-1 mm ECs:
 - Accuracy: 97.8 %

Al capacitors	IC/Connectors	Inductors	SECC
Al , Ni, Sn	Ni, Au , Al, Cu, Sn, Si	Fe, Cu	Ba, REEs, Ti, Ni, Sn, Ag

IC/Connectors		Resistor	SLCC	
Ba, REEs, Ti, Ni,	Au , Ni, Al, Cu,	Ni, Al, Cu, Sn, C	Ba, REEs, Ti, Ni,	
Sn, Ag	Sn, Si		Sn, Ag	

Optical Sorting: Can sort 90%

Highest Techno approach: Optical recognition + Laser disassembly + Robotic picking

Florian Sauer et al.: Recovery of Tantalum from Printed Circuit Boards - An overview of the IRETA Project

Recovery of Tantalum from Printed Circuit Boards

An Overview of the IRETA Project

Florian Sauer, Bum-Ki Choi, Gesa Beck, Mathias Wickleder

- Higly selective
- 0.3 s / EC
- **High CAPEX (Laser +** Robotic arm)
- **Partial solution**

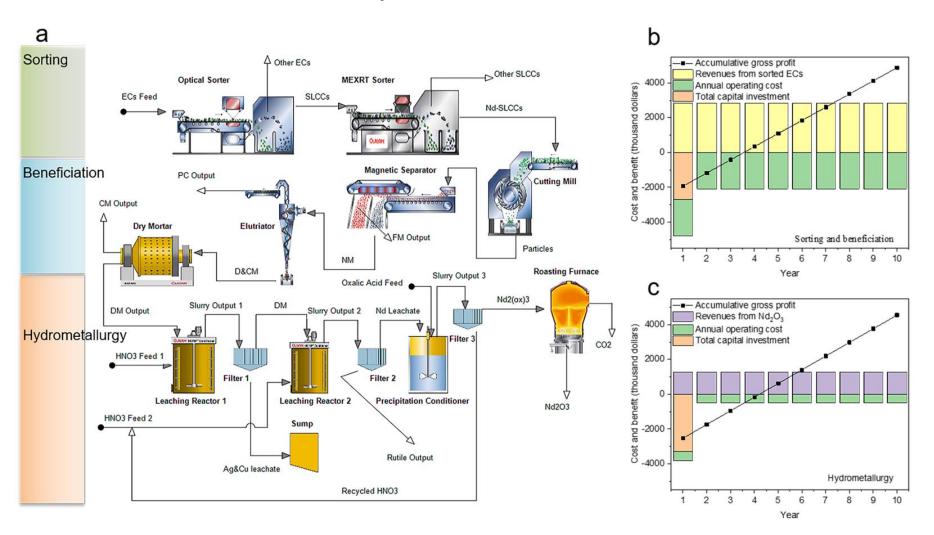
Whole PCB disassembly

Results obtained on 14 kg batch of wasted PCBs: Bare PCB (Cu+FG+Au)+Solder+ loose ECs)

- 10-5 mm FCs:
 - accuracy: 98.8 %

Al capacitors	IC/ Connectors	Inductors	Other SLCC	Nd SLCC	Ta capacitor
Al , Ni, Sn	Au , Ni, Al, Cu, Sn, Si	Fe, Cu	Ba, REEs , Ti, Ni, Sn, Ag	Ba, Nd , Ti, Ni, Sn, Ag	Ta , Ni, Mn, Ag, Co, Fe

- 5-1 mm ECs:
 - accuracy: 94.2 %


cea

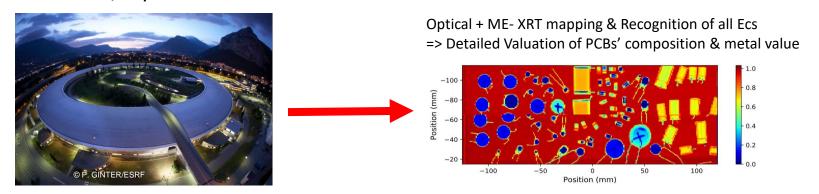
Resistor	IC/ Connectors	Other SLCC	Nd SLCC	Ta capacitor	Ba MLCC	Non Ba MLCC
Ni, Al, Cu,	Au, Ni, Al,	Ba, REEs, Ti	Ba, Nd, Ti,	Ta, Ni, Mn,	Ba, REEs, Ti,	Ca, Mn, Ni,
Sn, C	Cu, Sn, Si	Ni, Sn, Ag	Ni, Sn, Ag	Ag, Co, Fe	Ni, Sn, Ag	Sn, Ag

ME-XRT Sorting

New Business opportunities: Neodymium

NB: Nd ased Capacitor = 10% of Nb demand

Flowsheet & economic assessment: payback in 3-5 years



Next Step and Overall Impact on Value Chain

- MATERIALS
- * Scale up (Partners?) + other metals: Nb, W, Mo, Ga, Ge, Te, Sb, In, Os, Re.../ (B, FG?)
- * Electronic component / Composition Database (millions of large entries)

High Throughput Automated Composition Measurement at Synchrotron Radiation sources 10⁶ ECs/day measured

=> trade at the right price! f([all metals]_{accurate})

* Value Chain: Industrial Recyclers

Call for Action!

- 17 => 35% of recycling rate + CRMA goals are achievable with:
 - Smart design (eco-design) => enable easy disassembly / Recognition
 - Stronger Recycler Technology developers links
 - **Recycling of currently wasted spent metals (beyond B2B)**

EU EXTRACTION

At least 10% of the EU's annual consumption for extraction

EU PROCESSING

At least 40% of the EU's annual consumption for processing

EU RECYCLING

At least 15% of the EU's annual consumption for recycling

EXTERNAL SOURCES

Not more than 65% of the EU's annual consumption of each strategic raw material at any relevant stage of processing from a single third country

18

Call for Action!

- 17 => 35% of recycling rate + CRMA goals are achievable with:
 - a) Smart design (eco-design) => enable easy disassembly / Recognition
 - b) Stronger Recycler Technology developers links
 - c) Recycling of currently wasted spent metals (beyond B2B)

Will require:

- a) Rapid scale up & Adoption of promising technologies
- b) Economically viable recycling process adapted to new inputs
- c) Customers in the EU for recycled metals.

Funding Acknowledgement:

Thanks for your attention!

CEA: jean-christophe.gabriel@cea.fr T. +33 676 043 559

Nanyang Technological University: jgabriel@ntu.edu.sg

support from NEA & MND

#USS-IF-2018-4 (2018-2023) 8 Mn€

#CTRL-2022-1D-01 (03/2023-02/2028) 12 Mn€

FRANCE 2030: ANR-22-PERE-0009

Industrial support from EPR ECOLOGIC SAS

La 2e vie des équipements électriques

2013-2018: ERC N°[320915] "REE-CYCLE" 2,5 Mn€

