WMF CRITICALITY ASSESSMENT by BRGM, CRU & McKinsey

Christophe POINSSOT, Deputy CEO and Chief Scientific Officer, French Geological Survey

WMF Criticality assessment methodology

- Methodology is based on 7 quantitative and qualitative KPIs, with Environmental Performance introduced in 2021
- The combination of them allows for a thorough understanding of key challenges facing value chains in the years ahead

1	Known reserves	Based on reserves and production by USGS							
2	Uncertainty of supply	Anticipated deficit based on demand/supply scenarios							
3	Political exposure of supply	Weighted WGI on main production countries	Each KPI						
4	Recycling potential	Qualitative assessment of current recycling technologies	has a score from 1 to 3	Composite index	≤10	11	12	13	>13
5	Uncertainty of demand	Qualitative assessment of the predictability of main demand drivers							
6	Vulnerability to the absence of substitution	Qualitative assessment of the availability of alternative materials							
7	Environmental Performance	Averaged measurable indicators on water & energy footprint	No chang	es in 2023 by	r comp	arison	to prev	vious y	ears

bram

<u>2023:</u>

6 Red elements :
1 new: Zinc
Ni, Cu, Sn, Pr, Nd

More critical in 2023: 5 elements - Zn, Si, Graphite (C), Cr, Pt, Pb

Less critical in 2023: 4 elements – Co, W, Pd, Mo

KPI1: Known reserves

- Useful KPI to spot underinvestment cycles.
- **Copper = key example**. Very cyclical movements. Direct correlation with exploration budgets. Difficult years to come in terms of pipeline for new discoveries.
- Crucial to continue updating geological knowledge worldwide

Source: S&P Global Market Intelligence

KPI 2 and 5: Uncertainty of supply and demand

- WMF is the only criticality assessment which takes into account the pipeline of new mining projects to quantify structural deficit 10-year ahead
- Energy transition means higher intensity of metals per unit of power supplied.

- Fast permitting and financing of new projects is crucial
 - Average time to market of 17 years for mining projects from exploration to mine construction
 - As of now, only 50% of necessary mining and refining projects necessary for the energy transition are financed (3.3 trillion USD in CAPEX investment needed until 2030)

Global average lead times from discovery to production, 2010-2019

6

KPI 3: Political exposure

- Relative annual changes of World Governance Index values have potential high impacts on materials' criticality scores
- Specific attention to this KPI allows to highlight potential future key risk-countries
- Critical change in 2022 was the Russian invasion of Ukraine, 2023 is on South Africa

Electricity crisis in South Africa : Eskom failures and consequences

Minerals council of SA estimated a loss of mining volumes of 6% in 2022 (\$1,8 billion) largely due to power cuts (over 200 days last year)

Uncertainty on ports : Richard Bays issues and consequences on logistics : entire value chains are slowing down

China very reliant on South Africa imports - important share of key metals (PGMs, V, Cr, Ni, Cu)

Diplomacy : role as host of the BRICS summit in August ? Increased proximity to China and Russia

Electricity crisis burying the mining industry

KPI 4: Recycling potential

MATERIALS [©]brgm

- Monitoring progress of recycling technologies and capacities worldwide
- In the context of demand growth, recycling cannot meet the increasing demand
- Still, several value chains advancing fast, in particular :

KPI 6: Substitution

160

140

120

100

80

60

40

20

Annual (GWh/year)

MATERIALS [©]brgm

- Assessing supply chains vulnerabilities to materials which cannot be substituted (e.g. aerospace, defence)
- Example of OFREMI study on battery chemistries (technological substitution):

Low NMC Scenario **High NMC Scenario** Fast development of LFP and Na-ion (*in green*) • Huge consequences on supply scenarios • Zeta 2020 MATERIALS 2022 ΤΙΑΜΑΤ A NMC strong C NMC light New batteries capacities - Annual New batteries capacities - Annual ----NMC----Na ionPBA 160 Na_ionNMMT NMC111 ---NCA---NMC111 Si NCA 140 NMC532 NMC532 Si NCA Si ---LMR----**NMC622** 120 NMC622 Si Li rich Li rich Si NMC811 Annual (GWh/year) NMC822_Si LMNO NMC955 100 LMNO Si ---Solide---NMC955 Si ----LFP----NMCsolidesoufre FP **NMCsolideargyrodites** 80 LFPsolidesoufre _FP Si LFMP LFPsolideargyrodites LFMP Si ----LiS----60 ---Nalon---Li_S Na ionNVPF 40 20 FRANCE 2035 2040 2045 2050 2020 2025 2030 DES RESSOURCES MINÉRALE POUR LES FILIÈRES INDUSTRIELLES 2020 2030 2035 2040 2045 2050 2025

Key hypothesis : French « SNBC » scenario – fixed automotive fleet 2035-2050

- This KPI is a combination of quantitative and qualitative indicators, mostly extracted from OekoRess II Research Project (cf. 2021 Program)
- Focusing on upstream indicators (some being root causes for CO₂ emissions) water, energy and waste footprint.
- WMF Closing session on Technologies for sustainable mining

Definition of the WMF Environmental Performance KPI										
1	Pre-conditions for Acid Mine Drainage (AMD)	Qualitative Assessment	Qualitative AssessmentGeochemical preconditions for AMD do not existGeochemical preconditions for AMD exist in partGeochemical preconditions for AMD exist							
2	Mining method	Qualitative Assessment	 Mostly extracted in underground mines and/or low energy intensity Mostly extracted from open pit mines and/or medium energy intensity Mostly extracted from alluvial or unconsolidated sediments/high energy 	1 2 3						
3	Use of auxiliary substances	Qualitative Assessment	 Extraction & processing methods with low use of auxiliary chemicals Extraction & processing methods using auxiliary chemicals Extraction & processing methods using toxic reagents 	1 2 3						
4	Environmental Governance	Quantitative Assessment	 < 25% quantile of EPI for 180 countries > 25% and 75% quantile of EPI for 180 countries > 75% quantile of EPI for 180 countries 	1 2 3						
5	Size of Energy Flow	Quantitative Assessment	 < 25% quantile of 52 raw materials with available data > 25% and 75% quantile of 52 raw materials with available data > 75% quantile of 52 raw materials with available data 	1 2 3						
6	Water Stress Index	Quantitative Assessment	 < 25% quantile of 42 raw materials with available data > 25% and 75% % quantile of 42 raw materials with available data > 75% quantile of 42 raw materials with available data 	1 2 3						

Water availability in the context of climate change will become a key challenge of the mining industry

Conclusions

- WMF Criticality assessment remains dynamic
- Key risks appear to be more and more region-dependent
- New solutions are required

1 H																	2 He
3 Li	4 Be		W/ME 2023									5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg		VVIVIE ZUZJ								13 Al	Si	15 P	16 S	17 CI	18 A	
19 K	20 Ca	21 Sc	22 Ti	23 V	Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	Mo	43 Tc	44 Ru	45 Rh	Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba	57-71 Lantha- nides	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	Pt	79 Au	80 Hg	81 TI	Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89-103 Acti- nides															
Lanthanides :		57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
Actinides :		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm								

Christophe POINSSOT Deputy Chief Executive Officer, Chief Scientific Officer, <u>c.poinssot@brgm.fr</u>

Gaétan LEFEBVRE Expert in Mineral intelligence

BRGM French Geological Survey www.brgm.fr