Session 5 : Decarbonation of Bulk Materials

June 18, 2022 Shunichi Miyanaga Chairman of the Board Mitsubishi Heavy Industries, Ltd (MHI)

1. Current Situation in the Decarbonization of Materials Production

2. Steel Industry from an Equipment Manufacturer's Viewpoint

3. CO2 Capture Utilization Storage/Sequestration (CCUS)

as All-round Supporting Technologies

4. Summary

- 1. Current Situation in the Decarbonization of Materials Production
- Currently available process technologies need further elaboration: efficiency and capacity.
- Associated capital expenditures and operational costs need to be lowered.
- For hydrogen usage, CO2 utilization, etc., further progress and innovation are needed not only in the underlying scientific aspects of technologies but also in their industrialization.

- Common challenges/barriers
- : In addition to the new technologies under development, current production processes will likely continue to be used in some situations (e.g. to afford different ore grades).

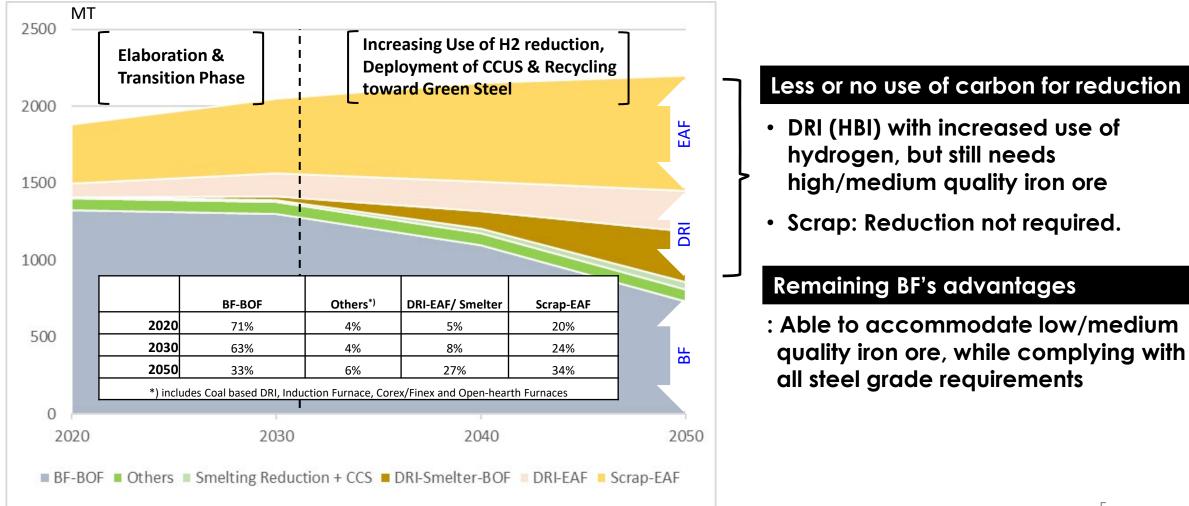
MATERIALS 2. Steel Industry from an Equipment Manufacturer's Viewpoint

1) Varied CO2 Emissions depending on the Routes of Steel Production

Raw materials preparation	ו Ironm	aking	Steelmakin	g		Kg CO ₂ /ton liquid steel
Coal Additives	Coking plant 270	Blast furnace 1290	LD (BOF)converter 174	Secondary Metallurgy	Traditional (blast furnace) (84% hot metal and 16% scrap in BOF)	1,674* (100%)
Natural Gas	Pelletizing 40	DR plant 397	EAF 140		Direct reduction + EAF (80% hot DRI and 20% scrap in EAF)	577 (35%)
Scrap		Scrap 0	EAF 130		Recycled scrap (100% scrap in EAF)	134 (9%)
Reduction gas H ₂	Pelletizing 40	DR plant 20	EAF 140		Green steel (H ₂ DRI–EAF) (80% hot DRI and 20% scrap in EAF)	187 (12%)

*Based on BAT and includes credits for slag and gas utilization(-280kg/CO2ton)

All figures based on emission factor of 80 g CO₂ / kWh (IEA forecast after 2030)


Restricted $\ensuremath{\mathbb{C}}\xspace$ Mitsubishi Heavy Industries, Ltd . All rights reserved.

2. Steel Industry from an Equipment Manufacturer's Viewpoint

2) Possible Range of Steel Making Technologies toward Decarbonization

Assessment and forecast by Primetals Technologies

3. CCUS as All-round Supporting Technologies

(1)Technologies' Present and Future

	Present	Future
CO2 Capture (CC)	 Various proven technologies Chemical Absorption Process Solid Adsorption Method Membrane Separation Method 	 Extend applications to many industrial processes and facilities emitting CO2 Develop compact and modular CC systems to be developed
Utilization (U)	 Direct use of CO2 such as for Urea production and EOR* Indirect use of CO2 (methanol and the like by conversion) 	- Technologies of both direct/ indirect use of CO2 to improve economics, expanding applications such as SAF*
Storage/ Sequestration (S)	 Feasibility study and/or demonstration plant stage Compression/Transportation costs need to be lowered 	- With incentives, viable projects to be realized in areas appropriate for storage

ATERIALS 3. CCUS as All-round Supporting Technologies

(2) Technologies Highlights : CO2 Utilization Plants supplied by MHI

Urea Production

EOR (Enhanced Oil Recovery)

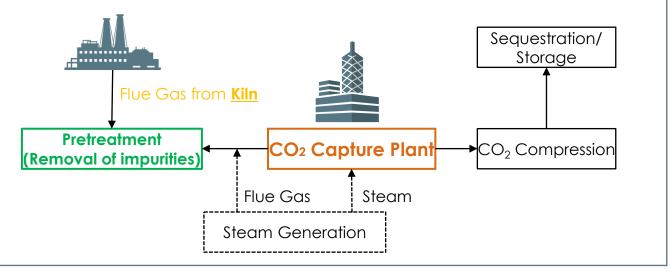
Petra Nova Carbon Capture EOR 4776 t/day

In UAE 400t / day Restricted ©Mitsubishi Heavy Industries, Ltd . All rights reserved.

MATERIALS 3. CCUS as All-round Supporting Technologies

(3) CCS – Feasibility Study for Lehigh Cement

Lehigh Cement


Purpose

- > Advancing low carbon in cement industry
- CCS on cement plant in <u>Edmonton, Alberta</u>
 - > Looking at the viability of capturing 90-95% CO2 (estimated 600,000tpa)
- Co-study with International CCS Knowledge Centre
 - > Funded by Emissions Reduction Alberta* (local government)
 - * invests innovative science and engineering that propels GHG reduction
- Contributing to Canada Climate Plan

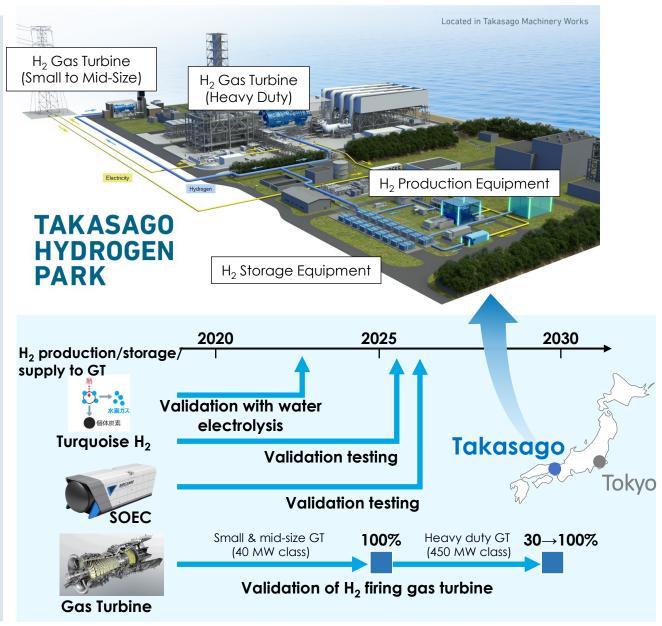
Block Flow Diagram

Flue gas from <u>Kiln</u> (over <u>90%</u> of CO₂ from Cement Plants)

Optimization to <u>impurities</u> specific to cement plant

(1)Multiple Pathways - an Inevitable and Pragmatic Approach

- : To cope with different conditions of countries in their respective economies, availabilities of energy and resources as well as technological/industrial capacities.
- (2)CCUS critical technologies for facilitating a complete Decarbonization of Bulk Material
 - : Complementary function to such new technologies that reduces CO2 emission in production processes of major bulk materials like steel, cement, aluminum.


Appendix: MHI's Takasago Hydrogen Park

A one-stop-shop for validating hydrogenrelated technologies from hydrogen production to power generation

Test and validate water electrolysis, turquoise hydrogen*, SOEC** and other technologies in-house and improve product reliability

- *Turquoise hydrogen: H_2 obtained through pyrolysis of methane into H_2 and solid carbon
- **SOEC (Solid Oxide Electrolyzer Cell): High temperature steam electrolysis
- Make progress toward establishing a hydrogen solutions ecosystem, which will help achieve a sustainable society by linking various industries with hydrogen technologies

Validate hydrogen gas turbine technology

