

E-waste Recycling

NTU-Singapore CEA Alliance for Research in the Circular Economy (SCARCE)

Prof. Jean-Christophe P. Gabriel^{1,2} ¹ NIMBE, CEA, CNRS, Univ. Paris Saclay ² NTU SCARCE Lab

Jean.gabriel@cea.fr

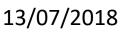
17 Juin 2022 Financial support from NEA & MND, award #USS-IF-2018-4

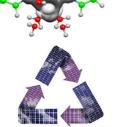
26/03/2017

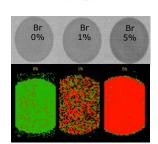
13/03/2019

- Why CEA: 70 years expertise in complex wastes recycling
- Why Singapore: Need; speed in decision making/policies; market size, ASEAN showcase

^{13/07/2018}

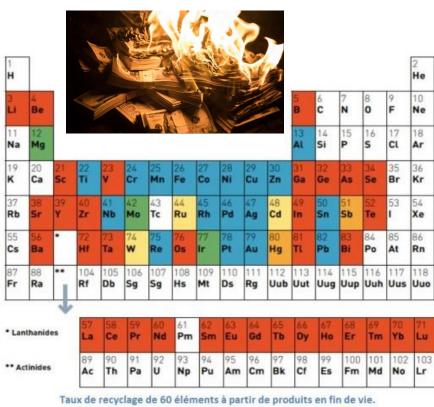



26/03/2017

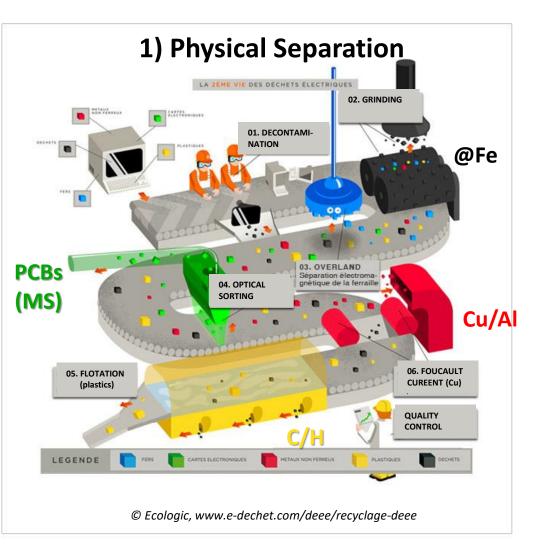

- Develop Sorting, hydrometallurgy, separation, and materials reuse processes for management of e-waste from:
 - Recycling of advanced lithium ion Batteries
 - Recycling of Silicon Solar panels
 - Recycling and recovery of valuable metals from Printed circuit boards
 - Recycling and treatment of e-plastic part.
- Lab scale pilots (1-10 kg/h)

circular economy saving resources, creating jobs

E-Wastes a Problem?


- 53.6 Mt (Million Metric Tonnes) in 2019 (74.7 Mt by 2030) Worldwide, Asia (24.9 Mt), the Americas (13.1 Mt) and Europe (12Mt)¹
- Only 17.4% collected & properly recycled; Many metals < 1%</p>
- Ewaste Management Market estimated at \$50 Bn in 2020 (\$145 Bn in 2028)²
- Environmental concern and Global Warming Contributor

≈ 5300 Eiffel towers


¹ Global E-Waste Monitor 2020, UN ² Allied Market Research 2020

(UNEP - 2011 - Recycling rates of metals - Graedel et al.)

How are WEEEs Recycled?

2) Pyrometallurgy

 Metal Melting (requires smelter)

3) Hydrometallurgy

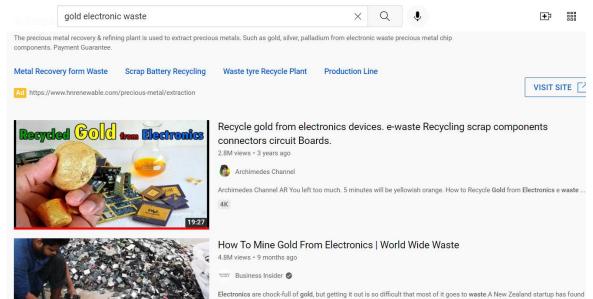
- Metal dissolution (Lixiviation)
- Purification (liquid-liquid extraction)
- Metal recovery (Electrolysis)

4) The additives problem

- Carbon black
- Flame retardants (Br, Sb)
- Toxic Metals (Sb, Cd; expl [Pb]
 = 2% in some household
 - cables (Chun Miao *et al.*, ⁵ 2022)

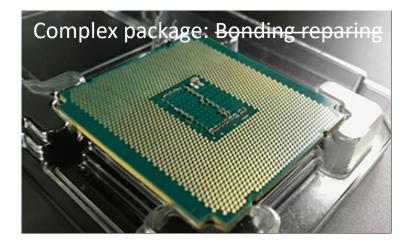
The Many Challenges in e-Waste Recycling

- WEEEs Collection
- Dismantling / disassembly
- Sorting
- Metals recovery
- Process development & costs
- Process waste management
- Business models



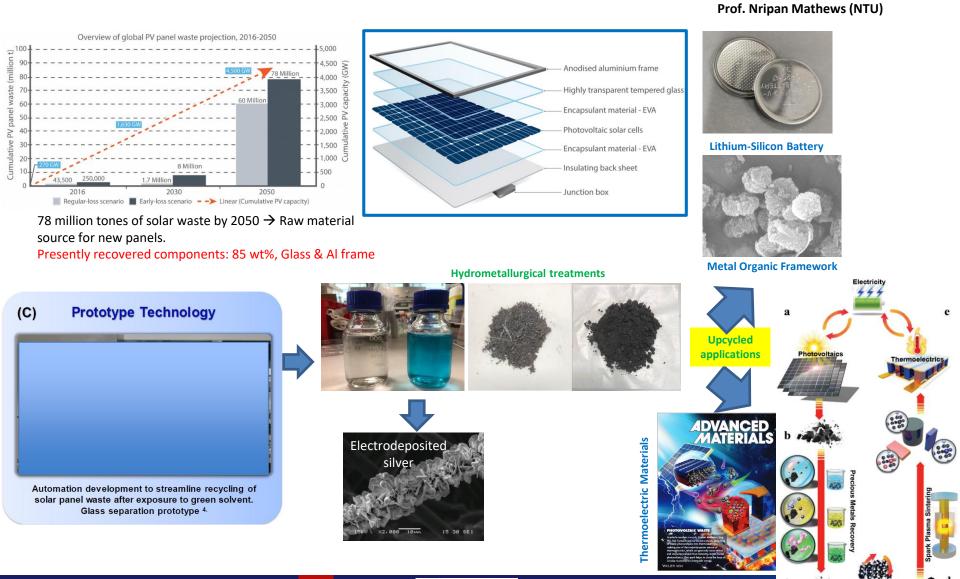
What Challenges In Collection?

- High variability in collection rates from country to country (EU: 42.5%; Asia: 11.7% down to Africa: 0.9%).
- Large informal sector: capture value (intermediaries) and use unregulated processes: Au => big waste / environment (82.6% ewaste not recycled via official channels / 8% in trash => landfill or incinerated)
- Consolidation (20% exported)
- Safety (LiB)


CC

Challenges in Dismantling / Decontamination

Lack of eco-conception: cannot be repaired/dismantled/sorted easily



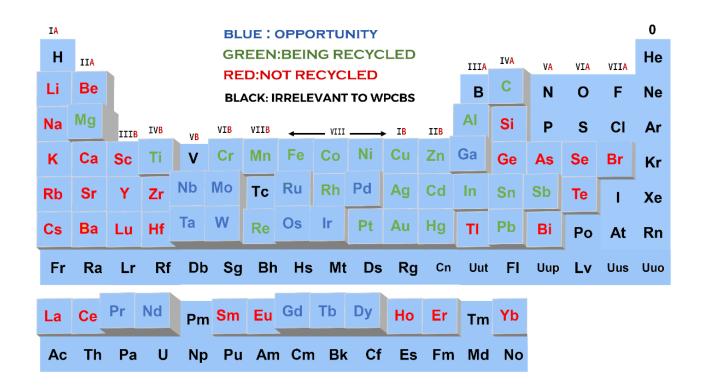
Dismantling Laminated Structures: Solar waste recycling

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

Principal Investigator:

Pulverizatio

Silicon waste

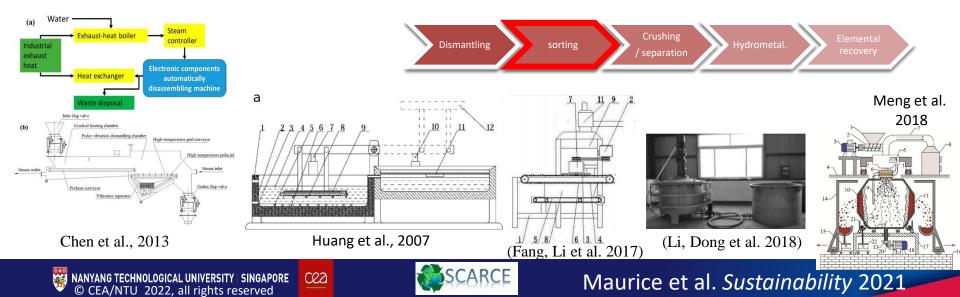

Doping

Challenges in Sorting & Metal Recovery: Focus on Printed Circuit Boards (PCBs)

Current situation

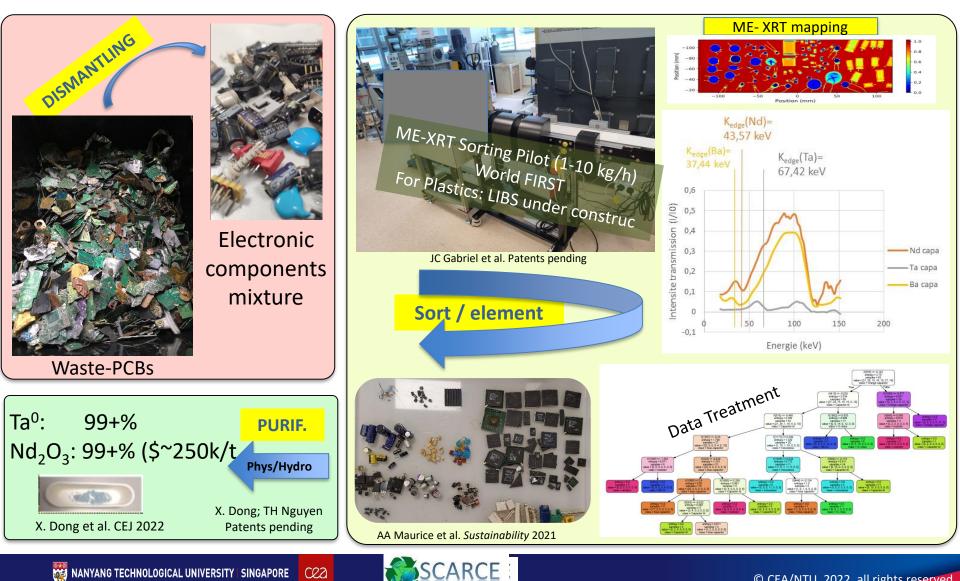
- Concentrations too low
- Few elements recovered

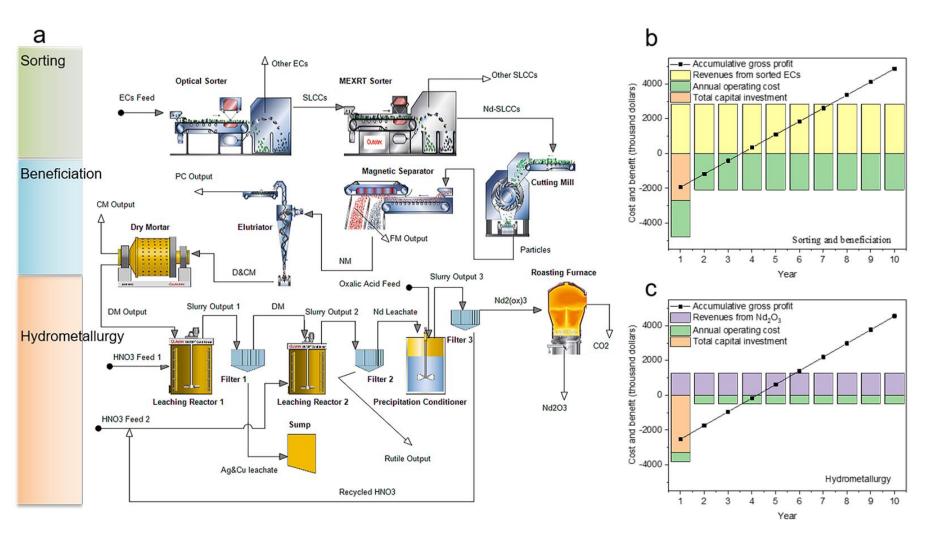
Challenges in Sorting & Metal Recovery: Focus on Printed Circuit Boards (PCBs)


Current situation

- Concentrations too low
- Few elements recovered

Our strategy: Enriching the stream: 1) Need to dismantle PCBs (commercial)

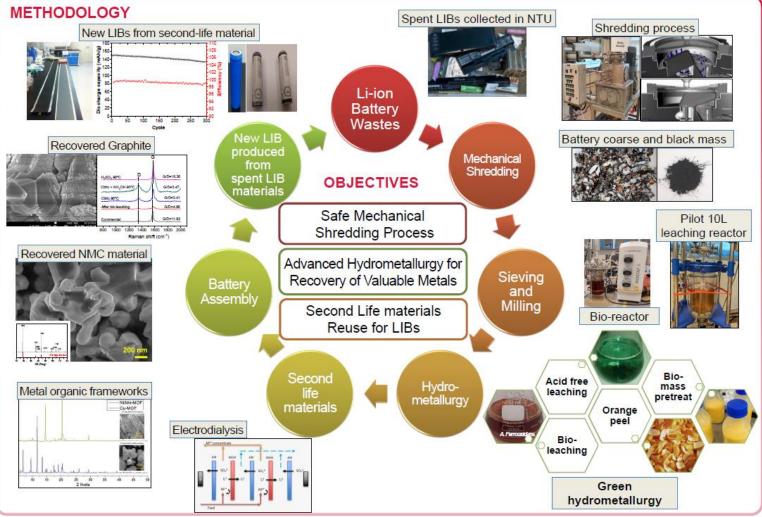

2) Sorting e-components to Increase the concentration of elements (No Commercial)


Change of paradigm: Disassemble instead of grinding

 \Rightarrow Simplified mixtures = new viable opportunities

(Au, Pt, Pd, M^x réfractaires: W, Mo, Nb, Ta; terres rares; Cr, Co, Ga, In, Mn, Ni, Sb, Sn, Zr etc.)

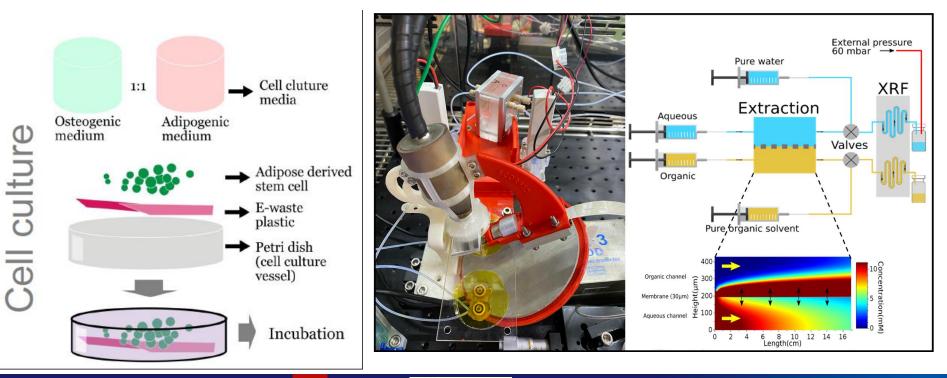
Electronic Component Sorting Economic Viability?



First assesment => profitable within 4 to 5 years

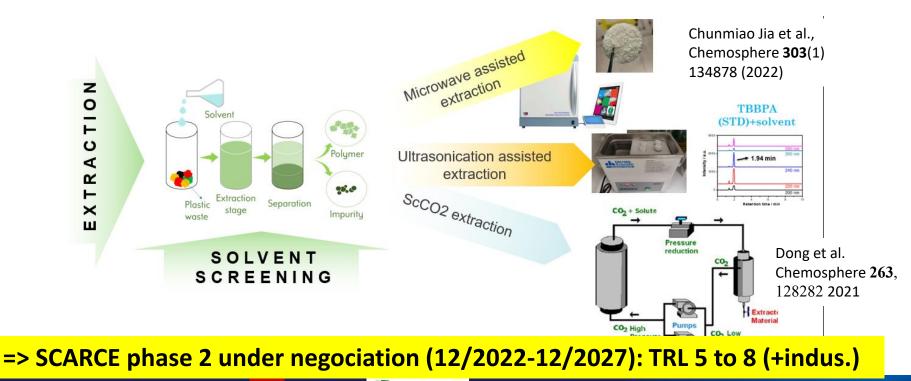
Lithium Batteries Recycling

Prof. Madhavi Srinivasan Dr. Daniel Meyer Assoc Prof. Dalton Tay Prof. Cao Bin Dr. Joseph Jegan Roy Dr. Do Minh Phuong Dr. Xing Zeng Lim Hong Kit



- Recovery >80 w% Spent LiB using green hydrometallurgy (2 Licences)
- Extraction rate (Co, Ni, Li, Fe, Mn) with purities > 90
- Demonstration of close loop: making of new LiB%

Conclusions: SCARCE Output Highlights Available for Licencing


- Re-use e-plastics for Cells Growth
- **Fast Process development using 1st Xray Integrated Microfluidics**
- **Si recycling from PV pannels**
- Elemental Sorting: Visible, ME-XRT (Ecs) and LIBS (Plastics)
- > Nd & Ta Recycling from PCBs economically viable & green solvents
- Green closed loop recycling: LiB + Food waste From LiB to LiB

Conclusions: SCARCE Output Highlights Available for Licencing

- Re-use e-plastics for Cells Growth
- **>** Fast Process development using 1st Xray Integrated Microfluidics
- **Si recycling from PV pannels**
- Elemental Sorting: Visible, ME-XRT (Ecs) and LIBS (Plastics)
- > Nd & Ta Recycling from PCBs economically viable & green solvents
- **Green closed loop recycling: LiB + Food waste From LiB to LiB**

Thanks for your attention!

Funding sources

National Environment

Agency

SCARCE Financial

support from NEA & MND

#USS-IF-2018-4

ard - Nurture - Cherish

CEA: <u>jean-christophe.gabriel@cea.fr</u> T. +33 676 043 559

Nanyang Technological University: jgabriel@ntu.edu.sg


Full publication list at: https://www.ntu.edu.sg/scarce

Thanks to ENSIC Nancy (Process) for two great Alumni:

Industrial support from EPR ECOLOGIC SAS

La 2^e vie des équipements électriques

Fabien Olivier CEA/NTU joint PhD

Sarah Chevrier VIA + PhD Student

Acknowlegment and thanks to SCARCE's Team

NTU

CEA

Madhavi Srinivasan Nripan Mathews Prof. Cao Bin Prof. Alex Yan Qingyu Prof. Yu Jing Lee Jong-Min (Assoc Prof) Dalton Tay Chor Yong

Dr. Andrea Brambilla	D
Dr. Anges Grandjean	D
Dr. Michael Carboni	D
Dr. Pierre Chagvardieff	D
Dr. Stephane Pellet Dr.	D
Rostaing	D
Dr. Jean Duhamet	D
Dr. Jean Philippe	D
Renault	D
Dr. Marlene Chapuis	D
Dr. Pierre Feydi	D
Dr. Emmanuel Billy	D
Dr. Jean Baptiste Sirven	D
	D
	D

SCARCE

Dr. Chan Jun Jie	Dr. Xu Junhua	
Dr. Dja La Yang	Dr. Xia Dong	
Dr. Joseph Jeganroy	Dr. Ange Maurice	
Dr. Wu Zhouran Kenny	Dr. Varun Rai	
Dr. Yuan Du	Dr. Dinh Ngoc Khang,	
Dr. Do Minh Phuong	Roy	
Dr. Saptak Rarotra	Lina Cherni	
Dr. Vida Krikstolaityte	Sarah Chevrier	
Dr. Sim Ying	Fabien Olivier	
Dr. Muhammad Iszaki	Nicolas Charpentier	
Dr. Tay Yeow Boon	Dr. Shi Pu Jiang	
Dr. Ines Beaugelin	Dr. Wan Yan	
Dr. Pham Huu Khue	Dr. Jia Chun Miao	
Dr. Raihana Begum	Dr. Pallab Das	
Dr. Fang Wei	Dr. Zeng Qiang	
Dr. Liu Daobin	Dr. Wang Hao	18

