

WMF 2022 Bio-Materials

16/6/2022

Summary

Bio-materials : why ?

Bio and sustainability: a demanding journey

Bio-materials: the paths forward

Bio-materials @Arkema

All data in this presentation are estimated in good faith, but have not been audited. They are indicative and meant as guidelines only.

An urgent need to address the environmental challenges

Global Temperature and CO₂ We need to: \rightarrow Reduce the GHG emissions of mankind to limit global warming and its consequences \rightarrow Address resources scarcity and availability Temperature vs. CO2, 1880-2013 (U.S. National Climate Assessment, via Climate Central) **PRODUCTS REUSE** Conversion Recovery Many paths are being explored \rightarrow Recycling energy efficiency ENERGY new energy production and storage BIOPLASTICS CO₂, H₂O, COMPOST lightweighting circular economy.... Input Chemistry A bio-based economy is a natural candidate \rightarrow RENEWABLE CELLULOSE, STARCH. Extraction RESOURCES SUGAR, OILS ARKEMA WMF 2022 Bio-Materials

Already a reality today

- Bio-based chemicals are already established, mostly for biofuels
 - Bio-ethanol (#100MT/y WW), bio-diesel (#35MT/y WW)

→ **Bio-plastics** are growing steadily

- Bio-plastics: already around 5MT/y WW
- With important newcomers (e.g. PLA)
 NatureWorks

A growing global demand for bio-materials

There is a demand from economic actors at all levels:

- Consumer demand pushes the bio-based materials growth
- → In the B to B context, environmental commitments bring companies to seek for low CO₂ solutions

reckitt

ems

Apple commits to be 100 percent carbon neutral for its supply chain and products by 2030

Bio-materials : why ?

Bio and sustainability: a demanding journey

Bio-materials: the paths forward

Bio-materials @Arkema

Bio-based chemicals are not necessarily fully virtuous

 \rightarrow Let's compare the CO₂ emissions of Acrylic Acid from two routes

	RM contribution	Yield loss contribution	Energy contribution	Total CO ₂ (kg/kg)
PEN > ACO > AA	0,87%	42%	-29%	100%
Glucose > Lactic acid > AA	-29%	50%	121%	142%

analysis done for a specific location

These data are indicative and meant as guidelines only.

- \rightarrow Even if CO₂ emissions are lower, biodegradability may still be an issue
 - Not all bio-based polymers are spontaneously biodegradable
 - There are technologies using additives to promote bacteria activity

 \rightarrow Cost of goods, and resource availability, will add difficulties

Sustainability, along the entire life cycle

Bio-materials : why ?

Bio and sustainability: a demanding journey

Bio-materials: the paths forward

Bio-materials @Arkema

The many resources of bio-based materials

Many challenges: performance, cost, availability, competition for resources

 \rightarrow Exploration of many sources, chemical paths and processes

Many sources: « wood or food »?

WMF 2022 Bio-Materials

ARKEMA

- → Ligno-cellulosic compounds : less expensive, more difficult
 - Natural fibers of wood / starch / hemp are already used
 - Bio-refineries based on pyrolysis have been extensively studied but still elusive
- \rightarrow Sugar and vegetal oil chemistry: more expensive, easier to process

The many processes for Bio-based materials

Another segmentation of the landscape: according to process

\rightarrow Enzymatic processes

- Pros: Catalytic technology, with life science power
- Cons: Kinetics may be low

\rightarrow Fermentation processes

- Pros: Water based process, low temperature, high selectivity,
 « one pot synthesis »
- Cons: Low concentration of product, high separation costs, long developping times

\rightarrow And also... Chemical processes

- Pros: Operational efficiency, assets already existing
- Cons: Not always adapted to bio-based complicated products

The investment wall, and the Mass Balance approach

- Developing a new « industry » for fully segregated bio-based products would require significant industrial investments, in time and money
- → The mass balance approach, similar to the green electricity credit, allows to kick-start biomarkets at reasonable cost

Bio-materials : why ?

Bio and sustainability: a demanding journey

Bio-materials: the paths forward

Bio-materials @Arkema

Arkema Corporate Social Responsibility Policy

Innovative materials for a sustainable world

ARKEMA WMF 2022 Bio-Materials

Bio-materials @Arkema : Performance and Sustainability

Movie: the virtuous PA11 loop

The virtuous loop of bio-based products

Partnerships are key to achieve such solutions, within existing value chains and beyond

