



Reliable. Sustainable. Resourceful.

### Tracing the relevant KPIs along the value chain The example of PVC and chlor-alkali products

Christophe André | Chief Executive Officer | Vynova Group

© Copyright Vynova Group

www.vynova-group.com

A leading European PVC and chlor-alkali company



# Reliable. Sustainable. Resourceful.



6 production sites in key European markets

1,300 employees

€1.3 billion turnover (2021)



**PVC** 



Vinyl Intermediates



Caustic Soda



Hydrochloric Acid



Potassium Derivatives



Sodium Hypochlorite Towards a net zero emissions industry along the whole value chain ... **VYNO** 



- Regulatory and NGO pressure
- Consumer expectations
- Voluntary industry commitments
- Investors pressure
- Individual company initiatives
  - VynoEcoSolutions
  - - Sustainability ambitions



## The use of PVC in Building & Construction



Low carbon footprint

50% fossil feedstock

Long application life

Recyclable multiple times

AAA

Physically or chemically

...without loss of performance!

VinylPlus: An enabler of a more circular B&C industry with clear KPIs to trace progress and industry commitment





#### PVC is uniquely compatible with mechanical, physical and chemical recycling options, yet fundamental challenges remain:

- Characterization and sorting can be further improved through innovation and collaborations
- Policy incentives are needed to drive higher recycling rates and support technology innovation
- Economic attractiveness for all players in the value chain

Measuring for impact: the window profile example

KPI





|               | Buy-to-use            | % industrial loss by weight from base material to installed window | Production yield loss reduction, pre-consumer waste recycling, take-back schemes |
|---------------|-----------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Use           | % recycled material   | % recycled content in window frame                                 | From 25-50% to 50-75%+                                                           |
|               | End-of-life recycling | % weight recovered and recycled vs. total waste                    | Leverage all recycling options (mechanical, physical, chemical)                  |
|               | Energy                | CO <sub>2</sub> eq emissions/tonne of window profile               | Decarbonization, renewable energy usage and process efficiencies.                |
| Use<br>longer | Product Lifetime      | Years of possible use                                              | Extend window lifetime + Multiple recycling of window components                 |
| (G)           | Resale price          | Residual value of window or window components per Kg/Ton           | Design for circularity                                                           |
| Use           | % innovative material | % by weight                                                        | Greener and more circular materials,<br>innovative extrusion/assembly processes  |
| smarter       | Product performance   | Insulation performance vs. cumulative production carbon footprint  | Design: lower material usage<br>Increase low-carbon recycling                    |
|               | Overall product usage | % of time product is used vs. total available time                 | Windows used 100% of the time                                                    |

Unit

## Use less, better, smarter: a rapidly changing ecosystem





## Use less, better, smarter: the challenge of efficient recycling

- PVC monostreams: pre-consumer
  PVC monostreams: post-consumer
  Mechanical / SBR
  Intentionally selected PVC
  Mechanical / SBR
  - Light waste fraction after segregation of other value materials (rest fraction rich in PVC after segregation of other plastics)
- Mixed waste streams with <5%</li>
  PVC (municipal solid waste)

- Chemical recycling
  - Gasification
- GasificationIncineration





Maturity and

economics

9

the

technologies



© Copyright Vynova Group

Vynova's circular, renewable and low-carbon portfolio : The role of innovation to bring quantified improvement





### Key take-aways on the role of KPIs along the PVC value chain vynova

#### PVC material : a solution to the use less, better and smarter

- A unique, proven performer in durable building & construction applications
- A versatile material, offering an infinite number of unique design opportunities
- A natural enabler of increased sustainability and circularity

#### PVC industry commitment to drive progress and innovation across its value chain

- A leading example of successful recycling schemes over several decades
- Committed to continuously increasing the sustainability and circularity along its value chains
- Actively and transparently engaged in its transformation process

### Vynova leading participation in this sustainable journey

- A leading player in the European PVC industry, with a full portfolio of more sustainable products
- Committed to reach its 2030 sustainability ambitions
- Constructively embracing win-win collaborations to innovate and make it happen... together!









## Reliable. Sustainable. Resourceful.

www.vynova-group.com

