HOW TO EMBARK OUR VALUE CHAIN FOR MATERIAL EFFICIENCY ? THE EXAMPLE OF CO₂ EMISSIONS

<u>A.R. 0.0.</u>H.H

ATERIALS June 18th, 2021 - Nancy

SAINT-GOBAIN

PAST PRESENTATIONS AT WMF

Material efficiency KPIs

KPIs Description Material value in the product / material value used in Buy-to-use production % of recycled materials Weight of recycled / total weight of materials in new product Use Weight of materials effectively recycled / total weight of Less End-of-life recycling materials Total energy consumption to produce the product Energy Product lifetime Total lifetime of the product, from completion to waste Resale price Resale price after Y years / initial price (Y is industry specific) Weight of new or innovative materials / total weight of % of innovative materials materials Use Product performance vs. Performance measurement of the product key functions vs. Smart weiaht weight er Overall product usage % of the time the product is used relatively to its full capacity

Source: WMF & Arthur D. Little analysis

KPI focused and implemented at Company level, but....

HOW TO EMBARK THE WHOLE VALUE CHAIN ?

- How to align a whole value chain on common KPI's ?
- How to develop tools that allow a value chain to speak the same language at the same time ?
- The increasing importance to have reliable and actionable data
- How to « push » the whole value chain to « adopt » that language ?

- How to align a whole value chain on common KPI's ?
- How to develop tools that allow a value chain to speak the same language at the same time ?
- The increasing importance to have reliable and actionable data
- How to « push » the whole value chain to « adopt » that language ?

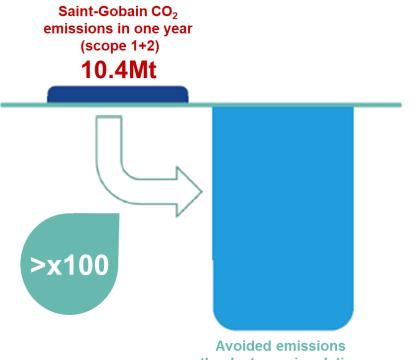
CLAIMS FOR CARBON REDUCTION IN B&C

How to make sure that each target is "feeding" each other

*I*ATERIALS

SAINT-GOBAIN

WHAT DOES IT MEAN FOR SAINT-GOBAIN ?



In our solutions offering

- Offer the best low-CO₂ and sustainable solutions in our markets
- Enable our customers to decarbonize their processes

OUR PRODUCTS HELP OUR CUSTOMERS TO DECARBONIZE

Avoided emissions thanks to our insulation solutions sold in a year¹

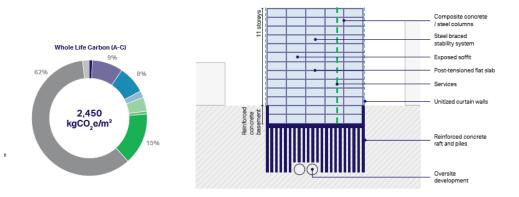
Example of Glass wool

A typical ISOVER glass wool product has amortized the CO₂ emitted in its production, transport & disposal just **3 months** after installation

Eclaz Glass +20% energy efficiency +10% thermal insulation +10% solar gain

External thermal insulation 30% heating savings Gain of up to **3** energy classes

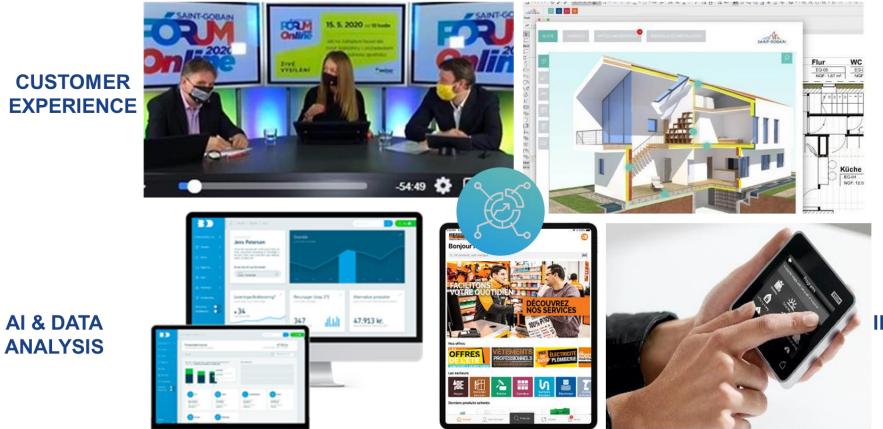
A COMMON LANGUAGE BASED ON LCA


CASE STUDY 01

Office building, London, UK

		PRODUCT	CONSTRUCTION	U	SE	END OF LIFE	EMISSIONS	BEYOND LIFE
		A1-A3	A4-A5	B1-B5	B6-B7	С	kgCO ₂ /m ²	D
BUILDING LAYERS	Structure Foundation, load-bearing							
	Skin Windows, roof, insulations							
	Space Plan Interior finishes							
	Services Mechanical, electrical, plumbing							
	Stuff (optional) Furniture & appliances							
	Building carbon emissions							
	Carbon compensation Removals and offset							

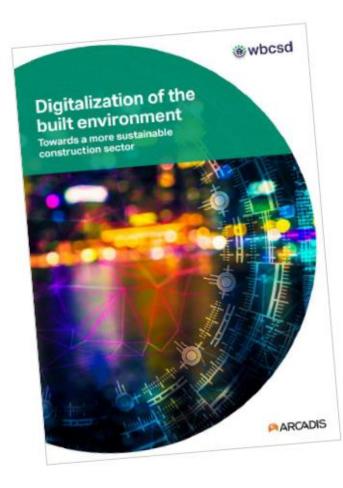
Case Study 01		Building Stages								
Whole life carbon emissions kgCO ₃ e/m ²		Product	Construction	Use		End of life	A-C	Beyond Life		
		A1-A3	A4-A5	B1-B5	B6-B7	с	Emissions	D		
Ş	Substructure - RICS Level 1 Foundations, Lowest floor slab	36	2.5	0		1.1	39	-5.1		
	Structure - RICS Level 2.1 - 2.4 Load-bearing, floors & roof	204	6.0	6		3.0	219	-48.0		
	Skin – RICS Level 2.5 – 2.6 Windows and external doors	100	0.5	94		0.2	195	-56.0		
g layers	Space Plan - RICS Level 2.7 - 2.8 Partitions	16	0.1	16		0.1	32	-1.0		
Building	Space Plan – RICS Level 3 Rinishes	23	0.2	23		0.0	46	-0.1		
õ	Stuff – RICS Level 4 Furniture & Appliances	5	0.0	10		0.0	15	-1.4		
	Services - RICS Level 5 Mechanical, Electrical, Plumbing	120	0.5	240	1,512	1.4	1,873	-18.7		
	Site emissions (A5) Waste, electricity; fuel		30				30			
Embodied carbon emissions		503	40	388		6	937	-130		
Operational carbon emissions					1,512		1,512			
Building carbon emissions		503	40	388	1,512	6	2,449	-130		



- How to align a whole value chain on common KPI's ?
- How to develop tools that allow a value chain to speak the same language at the same time ?
- The increasing importance to have reliable and actionable data
- How to « push » the whole value chain to « adopt » that language ?

DIGITAL AS A CHANGE BOOSTER FOR MATERIAL EFFICIENCY

BIM



INTEGRATED SUPPLY CHAIN

BUT MANY CHALLENGES TO HAVE THE FULL DIGITAL TWIN

Harmonization

Create harmonization to facilitate information exchange, increase mutual understanding and stimulate scaling digitalization in the constructions sector.

Facilitate collaboration

Encourage platform collaboration to co-create innovations, exchange relevant information flows, support collaboration and harmonization.

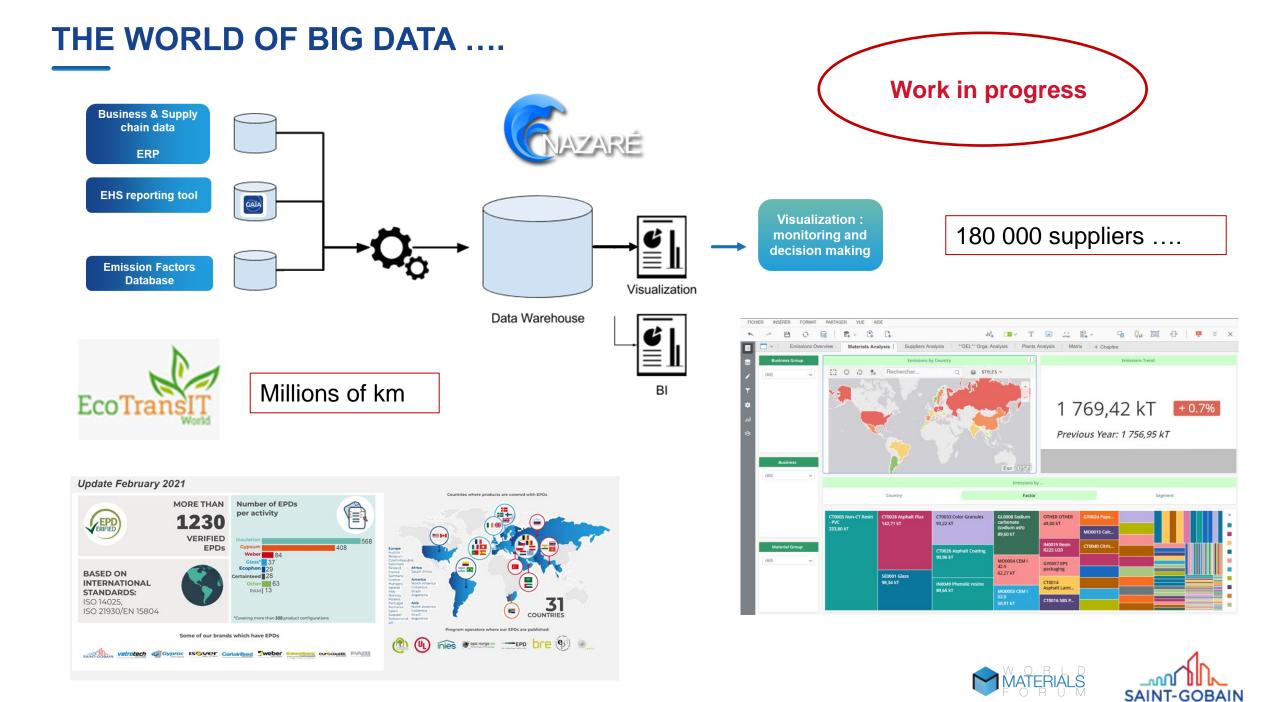
Support capacity building

Support capacity building by stimulating education and awareness. Develop knowledge and share open source data about the built environment.

Provide resources to scale

Provide resources to experiment with, to test and scale digitalization. Use regulations and compliance systems to create a level playing field for scaling promising digital developments.

Change procurement to foster innovation


Procurement strategies traditionally are risk-based and award low prices and tight planning. Procurement needs to foster innovation and stimulate cross sectoral collaborations.

- How to align a whole value chain on common KPI's ?
- How to develop tools that allow a value chain to speak the same language at the same time ?
- The increasing importance to have reliable and actionable data
- How to « push » the whole value chain to « adopt » that language ?

- How to align a whole value chain on common KPI's ?
- How to develop tools that allow a value chain to speak the same language at the same time ?
- The increasing importance to have reliable and actionable data
- How to « push » the whole value chain to « adopt » that language ?

AT A LEVEL OF A COMPANY

Engage all our suppliers

Reduce

emissions

from

transport

Levers

- Responsible purchasing charter
- SBT approach adoption
- Data transparency
- Benchmarking, selection criteria

Levers

- Optimize logistics
- Improve fuel efficiency
- Use decarbonized fuels
- Replace road by rail & water

Leverage our impact on the value chain

1. Natural Gas Vehicle

16 /

BEYOND THE ACTION OF A COMPANY

Relevant KPI's and data can feed

- Regulation (E+C regulation for buildings, public purchasing...)
- Sustainable finance TCFD, taxonomy, green bonds,
- Standardisation (LCA, ...) •

Material efficiency KPIs

KPIs

• How to disclose (CDP, ...)

Source: WMF & Arthur D. Little analysis