

WMF CRITICALITY ASSESSMENT

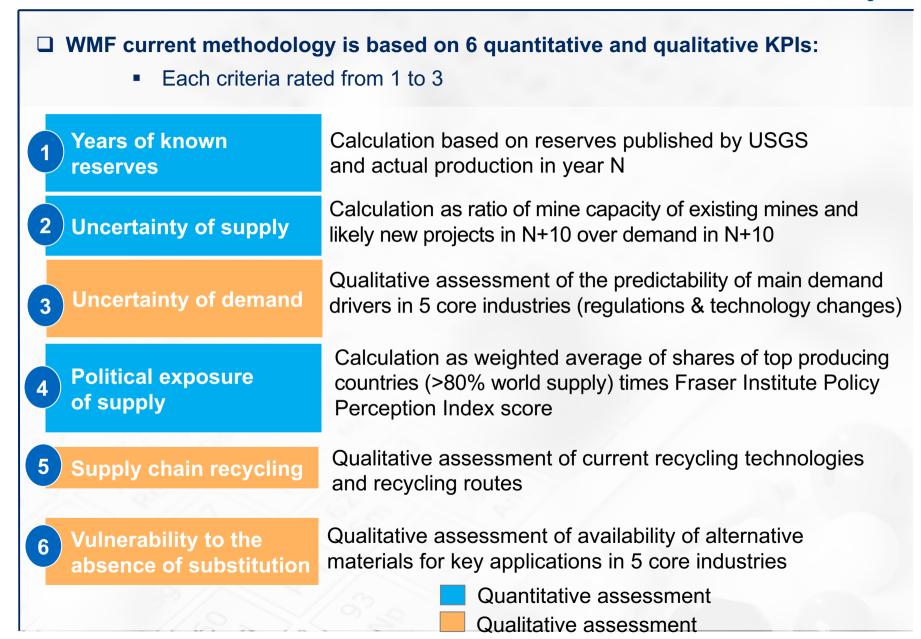
by BRGM, CRU & McKINSEY

World Materials Forum

26 August 2020

Pr. Dr. Pierre Toulhoat

p.toulhoat@brgm.fr



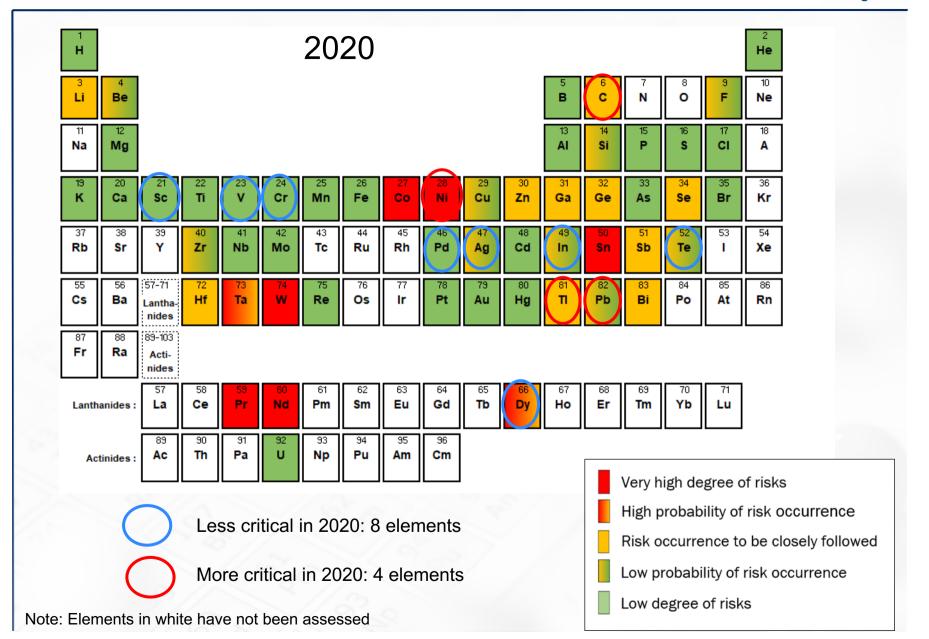
Key objectives:

- Getting the big picture on critical materials year after year
- Providing a simple and replicable decision making tool for industrial companies (both public and private)
- Defining a straightforward and evolutive methodology with both quantitative and qualitative KPIs
- This year, a NEW KPI representing environmental footprint will be presented by CRU with the idea of getting WMF participants input and integrating it into 2021 assessment

WMF Criticality assessment by BRGM, CRU & McKinsey

WMF Criticality assessment by BRGM, CRU & McKinsey

- ☐ WMF current methodology is based on 6 quantitative and qualitative KPIs:
 - Most critical elements are the ones with total score above 11
 - 2020 : Nickel becomes red, Dysprosium goes to red-orange

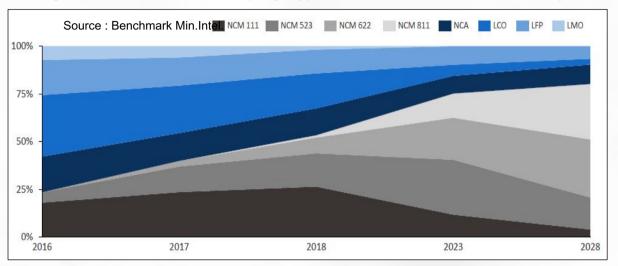

Sum of scores and color coding

<u>≤8</u> 9 10 11 >11

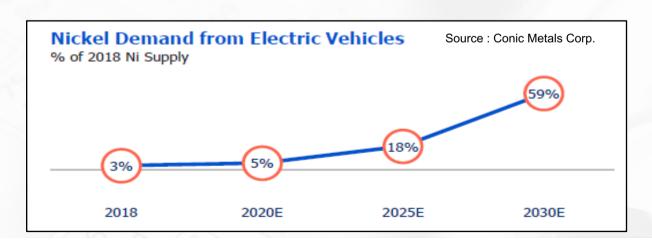
	Tungsten	Cobalt	Nickel	Tin	Neodymium	Praseodymium
1.Years of know reserves	2	1	2	3	1	1
2.Uncertainty of supply	2	1	1	2	2	2
3.Uncertainty of demand	2	3	3	2	2	2
4.Political exposure of supply	3	3	2	2	3	3
5.Supply chain recycling	2	3	2	1	2	2
6.Vulnerability to substitution	3	2	2	2	2	2
2020 Criticality score	14	13	12	12	12	12

WMF Criticality assessment by BRGM, CRU & McKinsey

Key observations from the 2020 WMF criticality assessment


- "Battery materials" remain on the spotlight: Nickel becomes red
 - Constraints on availability in the next 5-10 years are still very high
 - Frazer index evolution (e.g. Indonesia becoming the new focus point for nickel)
- ☐ Rare Earths and Tungsten: vulnerability of supply chains for core applications
 - Steady but slow progress on substitution (e.g Dysprosium goes to red-orange)
 - Alternatives sources progressively emerging
- ☐ Tin : deficit of exploration weighs on price volatility
 - No fundamental changes in 2020

Nickel: increased pressure from Li-ion batteries

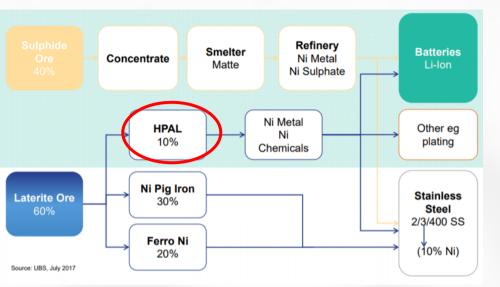


☐ Rise in demand for high-energy density Li-ion batteries

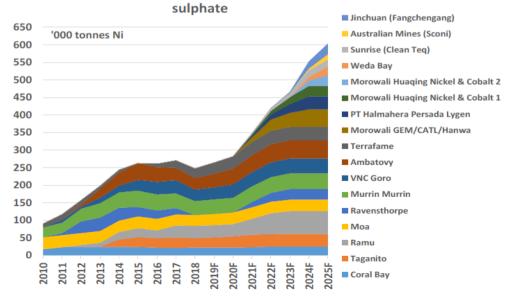
■ High-nickel compositions (in grey) to account for >70% of battery manufacturing in 2025

Battery uses to gain increasing shares of total Ni demand

Nickel: increased pressure from Li-ion batteries



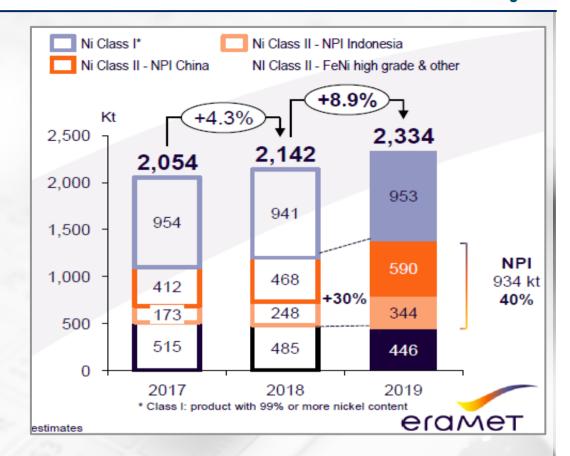
- Laterite Resources (178 Mt identified) vs. Sulphide Resources (118 Mt identified)*
- High Pressure Acid Leaching (HPAL) is the preferred option with numerous challenges
- Only 8 HPAL plants in the world today


☐ 600 kt capacity build up by 2025

- Integrated production (Jinchuan et SMM
- Capacity conversion (BHP Nickel West)
- New comers (CleanTeq, Sconi, Morowali)

Nickel production from HPAI/leaching - suitable to make Ni $\,$

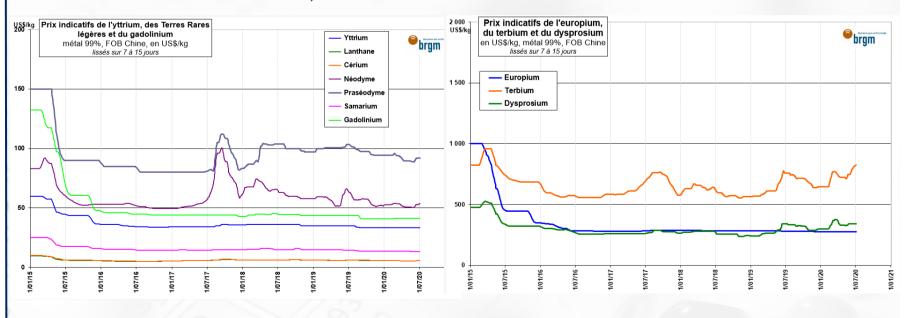
Source: Company reports, Macquarie Commodities Strategy, May 2019


^{*}Mudd et al., 2014

Nickel: increased pressure from Li-ion batteries

- ☐ Indonesia : the swing factor
 - Chinese investments could lead to 100 kt Ni sulphate capacity in Indonesia by 2023
 - Challenge to convert Nickel Pig Iron (NPI) as a new source for batteries: HPAL vs. leach plants
 - Tsingshan/GEM project

Cobalt, nickel sulphate: Huayou Cobalt to build integrated battery supply chain in Indonesia and China


Published on June 5, 2020

■ Ni to remain under tension until 2023!

Rare Earths: business as usual?

- ☐ Limited impact of the COVID crisis on price dynamics
 - Most Chinese capacity not operating at full capacity before crisis (utilization rate <40%)
 - minimal effect of the lockdown period
 - Steady prices along 2020 (except Tb relative volatility)
- ☐ Chinese quotas expected to remain unchanged in 2020
 - H1 refined quotas: **63,500 t REO** allocated between the 6 state-owned enterprises
 - China expected to account for up to 87% of global refined production in 2020 (roughly the same as in 2015)

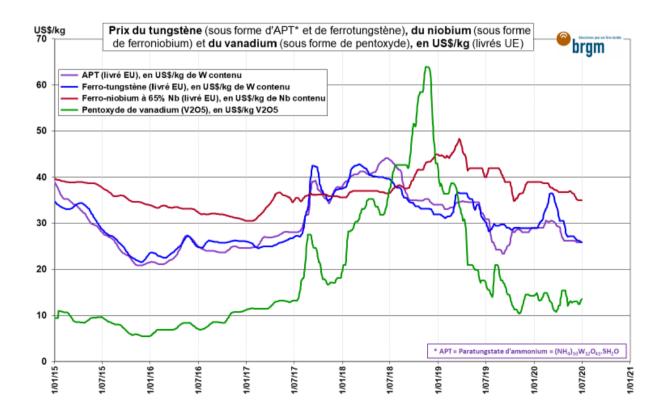
Securing new supply of Rare Earths: the case of USA

- □ Pentagon commitment to funding new rare earths facilities in the US
 - In late 2019, Pentagon announced funding up to 40 M US\$ to build REEs separation pilot plants
 - MP Materials and Lynas Blue selected for 2 plants in Texas and Colorado. Funding confirmed on 22nd July
- MP Materials to be listed on the NYSE after agreeing to merge with Fortress Value Acquisition Corp. : https://mpmaterials.com/news/

Securing new supply of Rare Earths

- ☐ The case of Australia
 - Several projects recognized of « National Interest ». Pilot plants expected in 2021:
 - Browns Range- Northern Minerals
 - Nolan's Bore Arafura
 - Lynas Corp. planning to expand in Australia.
 Resumed operations in Malaysia on May 4th.

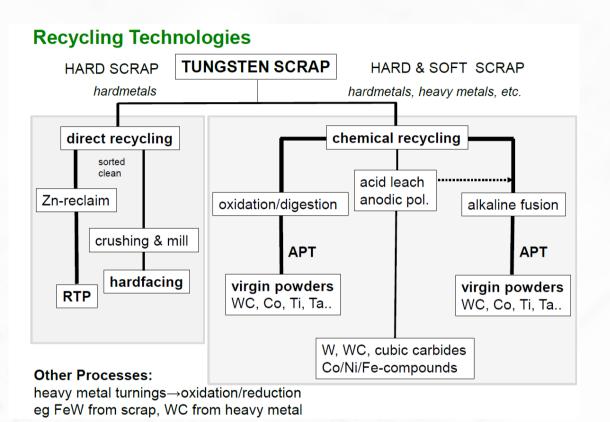
- ☐ The case of Greenland and Russia : at the heart of conflicting geopolitical interests around their REEs potential
 - Kvajnevjeld project (Greenland):
 - Shenghe/China Nat. Nuclear Corp.: 32 kt/y concentrates capacity
 - Trump offering to « purchase Greenland » in 2019
 - Tomtor project at the Russian / Chinese border:
 - o construction expected in 2021 with 20 kt REO/y capacity
- → A few more years to reduce criticality


Tungsten - A vulnerable supply chain

□ A vulnerable supply chain

- GDP-led market
- Chinese dominance maintained with quotas and pressure on the main suppliers
- Volatility in prices expected in the second half of 2020
- Global demand for tungsten expected to contract by 10-20% y-o-y in 2020

Moves in the Tungsten market


☐ Growing alternatives to the Chinese monopoly

- Vietnamese producer Masan Resources moves to vertical integration with acquisition of HC Starck in June (W metal and carbide powders)
- Canadian Almonty is building the 2nd largest mine outside China (Sangdong in South Korea. Reserves are 7.89 Mt grading 0.47% WO₃) with 15-years offtake in the US.
- Eurasian tungsten mine projects could add more than 11 ktpy of new supply by 2029 if all are brought on-line successfully, the largest of any region
- Renewed interest for ROW refiners and tool makers to reduce their dependence on Chinese raw materials (Sandvik)

Moves in the Tungsten market

☐ Tungsten recycling still in progress

→ Tungsten 1 to 2 years away to move away from the "reds"

THANK YOU

p.toulhoat@brgm.fr