

WMF CRITICALITY ASSESSMENT

by BRGM, CRU & McKINSEY

World Materials Forum

28 June 2018

Pr. Dr. Pierre Toulhoat COO BRGM

p.toulhoat@brgm.fr

BRGM French Geological Survey www.brgm.fr

We applied a 3-step approach to assess criticality for the majority of the elements of Mendeleev's Periodic Table

Definition of 6 criticality assessment criteria

Definition of scoring methodology per assessment criteria Definition of a composite criticality index

Definition of 6 criticality assessment criteria	Definition of scoring methodology per assessment criteriaDefinition of a composite criticality index
1 Years of known reserves	Calculation based on reserves published by USGS and actual production 2017
2 Uncertainty of supply	Calculation of anticipated deficit based on demand/supply scenarios in 2027 (negative % indicate a surplus)
3 Political exposure of supply	Calculation as weighted average of shares of top producing countries (>80% world supply) times Policy Perception Index
4 Supply chain recycling	Qualitative assessment of current recycling technologies and recycling routes
5 Uncertainty of demand	Qualitative assessment of the predictability of main demand drivers in 4 core industries (regulations & technologies changes)
6 Vulnerability to the absence of substitution	Qualitative assessment of the availability of alternative materials for key applications

Definition of 6 assessment cr	criticality riteria Definition of scoring methodology per assessment criteria Definit comp index	ition of a osite criticality
	Sub - Criteria	Score
	Known reserves >40 years	1
Years 1 of known	 Known reserves 20-40 years 	2
reserves	Known reserves < 20 years	3
	 Negative or <10% 	1
2 Uncertainty of supply	■ 10-30%	2
	■ >30%	3
Political	• >60	1
3 exposure	• 50-60	2
of supply	• <50	3

Definition of 6 of assessment cri	Criticality teria Definition of scoring methodology per assessment criteria Definition of a composite critical index	lity							
	Sub - Criteria	Score							
	 Technologies and recycling routes exist; recycling rate medium to high 								
4 Supply chain recycling	 Technologies and recycling routes exist but recycling rate is low due to cost or quality constraint 	2							
	 Immature recycling technologies, poor collecting schemes, and/or low recycling rate 								
	Demand drivers, key end-uses and regulations stable and predictable								
5 Uncertainty of demand	One of the sub-criteria expected to change in short/medium term								
	 Two of the three sub-criteria expected to change in short/medium term 								
Vulnerability	 Alternative materials exist, are qualified for core industries and have comparable economic viability 								
6 to absence of substitution	 Alternative materials exist, are qualified for core industries and have lower economic viability 								
	 Alternative materials do not exist or are not qualified for core industries 	3							

We applied a 3-step approach to assess the criticality for the majority of the elements of Mendeleev's Periodic Table

Definition of 6 criticality assessment criteria

Definition of scoring methodology per assessment criteria Definition of a composite criticality index

1 H																	2 He	
3 Li	4 Be											5 B	6 C	7 N	° O	9 F	10 Ne	
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 A	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 TC	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe	
55 Cs	56 Ba	57-71 Lantha- nides	72 Hf	73 Ta	74 VV	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	⁸⁴ Po	85 At	86 Rn	
87 Fr	88 Ra	89-103 Acti- nides																
Lanti	hanides :	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
Actinides : Actinides : Ac				sks														
Note	Note: Elements in white have not been assessed										Hig Risl Low Low	h prob k occu v proba v degre	ability rrence ability ee of r	of risk to be of risk isks	k occu e close < occur	Irrence ly followed rrence		

MATERIALS Obrgm

□ Up to 2027, 2 core industry segments will play a huge role in the uncertainty of demand for raw materials :

- Automotive body & power trains
- Energy generation & storage

□ Criticality can arise from the vulnerability of core industry segments to the lack of substitution of one particular metal (e.g. W, Hf)

□ Criticality of some materials usually seen as "non sexy" is increasing due in part to under investment (e.g. Sn, Zn, Cu)

Criticality of "usual suspects" involved in the development of renewable energies remains high (e.g. Co, Nd, Pr, Dy)

Selected examples and associated core industries

Tungsten - A vulnerable supply chain

Tin - Deficit of investment in exploration

Years of known reserves

17 years of tin reserves (4.8 Mt) due to under investment in exploration in developed countries for many years

Uncertainty of supply

Reduction of criticality could be achieved if new mines start-up on schedule (Australia, Spain, etc.)

Political exposure of supply

High political exposure (Indonesia, Myanmar, China) and increasing share of artisanal mining (Myanmar, DRC)

Supply chain recycling

Efficient recycling routes (>50%)

Uncertainty of demand

Potential role in microelectronics and automotive power trains

Vulnerability to the absence of substitution

Substitutes in core industries exist with lower performance

Platinum – Sensitivity to geopolitical risks

Hafnium – Vulnerability of substitution in core industries

MATERIALS Obrgm

Lithium – Towards equilibrium of the market

THANK YOU

p.toulhoat@brgm.fr

BRGM French Geological Survey www.brgm.fr