3D Printing/ Process Parameters

June, 2016

Sung Ha
Hanyang Structures and Composites Lab. (HSCL)
Dept. of Mechanical Engineering
Hanyang University, KOREA
Stanford Composite Design Team

sungkha@gmail.com
3D Printing Technology

Design, Material & Process Parameters

- Loadings
- Design
 - Material
 - Metal, Plastics, Ceramics
 - Process Parameters
 - Speed & path
 - Heat Source
 - Nozzle movement system
 - Material heating system
 - Material feeding process

FDM – Fused Deposition Modeling
(thermoplastics, ABS and Nylon)

SLS - Selective laser sintering
(thermoplastics, metals, Ceramics)

LENS - Laser Engineering Net Shaping
(metal)

3D Ink Jet Printing
Optimal Design of Automotive Lower Arm, for 3D-Printing

Conventional design
Constrained by manufacturing Process,
100 % volume

Topology optimization
60 % volume
Conventional Process vs 3D Printing

Design, Material & Process Parameters

- **Automotive Lower Arm**
 - Conventional Process
 - 3D Printing

<table>
<thead>
<tr>
<th>Design</th>
<th>Material</th>
<th>Process Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loadings</td>
<td>Metal, Plastics, Ceramics</td>
<td>Speed & path</td>
</tr>
</tbody>
</table>

- **Heat Source**

- **100 %** vs. **60 %**

- **100 %** waste vs. **60 %** waste

- Two aspects in saving materials in 3D printing:
 1. In the design process;
 2. In the printing process.

- For 3D printing, redesign to save more material.
The 3D in the 3D printing is 2D by 1D...

3D printing

- FDM, SLS, SLA, LENS, EBM, InkJet, ...
- Enable to escape the constraints of traditional production process...

However, 3D in the 3D printing is achieved by 2D multiplied by 1D.

May cause slow process and weak materials → Need to Optimize PROCESS PARAMETERS
Process parameters and **Key Performance Indicators (KPI)**

- **Loadings** → **Design** → **Material** → **Process Parameters** → **Parts**
 - **Material** includes **Metal**, **Plastics**, and **Ceramics**
 - **Process Parameters** include **Speed & path**, **Heat Source**, and **Nozzle path and speed**
 - **Key Performance Indicators** include **Quality of Product**, **Production Rates**, **Dimensional Precision**, and **Waste & Scraps**

- **Key Performance Indicators**:
 - **Quality of Product**: Stiff & strong
 - **Production Rates**: Cycle time
 - **Dimensional Precision**: High precision
 - **Waste & Scraps**: Zero waste

Balance Process parameters To achieve the best KPI
FUSED DEPOSITION MODELING (FDM)

KEY METRICS
- Maximum build size: 20” x 20” x 20”
- Speed: Slow
- Cost: Medium
- Available materials: Thermoplastics ABS, PC, ULTEM

KEY PARAMETERS

KEY APPLICATION AREAS
- Conceptual Models
- Engineering Models
- Functional Testing Prototypes
Overall Process Parameters in FDM 3D printing

Cause and Effect Diagram

Concept Models
- Topology Optimization
- STL File

Materials
- Melt & Cool
- Density
- Color

Part Build Orientation
- X-direction
- Y-direction
- Z-direction

Part Build Parameters
- Part interior Style
- Part fill style
- Raster angle
- Raster width & gap
- Layer thickness
- Contour width & gap
- Part shrinkage

Working Parameters
- Model build temp
- Envelope temp
- Machine calibration
- Nozzle diameter

FDM Machine
- Temperature
- Humidity

Environmental Factors

KEY PERFORMANCE INDICATOR (KPI)

ref: Optimization of fused deposition modeling process parameters, 2015, Advances in Manufacturing
Effects of Print Speed and Layer thickness on Coalescence

- Influences of **Print Speed** and **Layer Thickness** on **Coalescence** in FDM

- The formation of bonds in the FDM process is driven by the thermal energy of the semi-molten materials.

![Diagram of FDM process with coalescence stages: 1. Surface contacting, 2. Neck growth, 3. Diffusion and Randomization](image

Coalescence (layer thickness=0.5 mm)

- Layer thickness =0.5 mm
- **Print Speed**
 - mm/sec
- **Coalescence**

Coalescence (layer thickness=1.0 mm)

- Layer thickness =1.0 mm
- **Print Speed**
 - mm/sec
- **Coalescence**

ref: alternate slicing and deposition strategies for FDM-Huang thesis
Effects of Build Orientation on Tensile Strength in FDM

Material: ULTEM 9085

ULTIMATE TENSILE STRENGTH (MPa)

STRENGTH of INJECTION MOLDED (84 MPa)

Machine settings
- default 1
- default 2
- Optimal

MECHANICAL PROPERTIES OF FUSED DEPOSITION MODELING PARTS MANUFACTURED WITH ULTEM*9085, ANTEC 2011, Boston
SELECTIVE LASER SINTERING (SLS)

KEY APPLICATION AREAS
- Structural components

KEY METRICS

<table>
<thead>
<tr>
<th>Application</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum build size</td>
<td>700 mm x 380 mm x 560 mm</td>
</tr>
<tr>
<td>Speed</td>
<td>Medium</td>
</tr>
<tr>
<td>Cost</td>
<td>Medium</td>
</tr>
<tr>
<td>Available materials</td>
<td>Powdered plastics (nylon), metals (steel, titanium, tungsten), ceramics (silicon carbide) and fiber-reinforced PMCs</td>
</tr>
</tbody>
</table>

KEY PARAMETERS (Laser Source)

- A focused laser beam is used to fuse/sinter powder particles in a small volume within the layer.

Metal Technology Co

3D Systems
Process parameters in SLS

Materials: TP, metal, Ceramics

High-energy laser beam to fuse metal (plastics or ceramic) powder

- **Laser Parameters**
 - Laser Power / Laser Energy
 - Spot Size
 - Scanning Speed
 - Scanning Mode
 - Interval Time
 - Exposure Time
 - Part Bed Temperature

- **Geometric Parameters**
 - Hatch Spacing
 - Scan Pattern
 - Layer Thickness
 - Building Direction
 - Part Orientation
 - Point Distance

- **Cause and Effect Diagram**

[Diagram showing cause and effect relationships between sintered material, sintering parameters, and physical-mechanical properties of sintered elements.]
Effects of SLS PROCESS PARAMETERS on Strength & Density

- SLS process parameters: Laser Power, Scanning speed, Exposure Time, Point Distance, etc

Material: Direct Steel H20

- Effects of Point Distance & Laser Power Output

ET=92us, SP=87mm/s

ET=100us, SP=84.5mm/s

Research Areas to improve 3D printing

- Need to develop Models for predicting the KPI in terms of Process Parameters
- **Optimization of process parameters**: raster angles and gaps; laser power, scanning speed, exposure time, point distance, etc
 - Thermal-chemical-mechanical simulation of material melting and cooling process
 - Measurement of mechanical attributes for various process parameters
 - Multi-scale approach to select best process parameters
 - Need to perform Topology optimization considering material anisotropy, layer direction
 - Fiber reinforced composites
CONCLUSION: Integrated Processes to Achieve the best KPI

Design, Material & Process Parameters → Simulation Tools → KPI

- Integration of Design and Process Parameters
- Balance Process parameters

Key Performance Indicators

- Quality of Product
 - Stiff & strong
- Production Rates
 - Cycle time
- Dimensional Precision
 - High precision
- Waste & Scraps
 - Zero waste

\[\text{RPN} = \text{Severity} \times \text{Occurrence} \times \text{Detection} \]
Composites for 3D-printing

- To enhance material properties of 3D printing:
 Develop a 3D printing of continuous-fiber composites

- Plastics
 - Nanocomposites
 - Short fibers
 - Long fibers
 - Continuous fiber

- Resin reinforced with chopped carbon fiber is placed layer by layer.
- Temperature difference and cohesion between the individual beads, resulting in asymmetric shrinkage and bending moments