

Extending Product Lifetimes as an Approach to Material Efficiency

Dr. Cynthia Arnold

Senior Vice President and Chief Technology Officer The Valspar Corporation

- Approaches to extend materials / products / systems lifetimes
- Highlight coatings as an enabler for lifetime extension focus on lifetime assessment issues
- Data management issue and opportunity
 - The Materials Genome Initiative
- Decision framework

valspar MATERIALS Approaches to Extend Lifetime

1DESIGNSelect durable systems / materials • Avoid / improve endurance through damage events [Surface protection (e.g., coatings); System design for impact / crash]2MAINTAINImprove maintenance tools and processes to track in-service performance and recommend intervention points (e.g., Non- destructive testing. Sensors and smart coatings.), supported by risk management3REPAIRProvide repair technologies with improved efficacy, endurance, application robustness, supported by risk management4TEST & SPECIFY MODELSImprove lifetime assessment protocols and specifications • Harmonize lifetime assessment protocols for efficiency • Leverage data for models5RE-USEEnable second life in primary functional service (e.g., Recycle. Design for disassembly.)6CONSUMER HABITS• Encourage longer use of functional products.			
2MAINTAINperformance and recommend intervention points (e.g., Non- destructive testing. Sensors and smart coatings.), supported by risk management3REPAIRProvide repair technologies with improved efficacy, endurance, application robustness, supported by risk management4TEST & SPECIFY / MODELSImprove lifetime assessment protocols and specifications • Harmonize lifetime assessment protocols for efficiency • Leverage data for models5RE-USEEnable second life in primary functional service (e.g., Recycle. Design for disassembly.)6CONSUMER • Encourage longer use of functional products	1	DESIGN	 Avoid / improve endurance through damage events [Surface
 3 REPAIR application robustness, supported by risk management 4 TEST & SPECIFY / MODELS 5 RE-USE Enable second life in primary functional service (e.g., Recycle. Design for disassembly.) 6 CONSUMER Encourage longer use of functional products 	2	MAINTAIN	performance and recommend intervention points (e.g., Non- destructive testing. Sensors and smart coatings.), supported by
 4 SPECIFY / MODELS · Harmonize lifetime assessment protocols for efficiency · Leverage data for models 5 RE-USE Enable second life in primary functional service (e.g., Recycle. Design for disassembly.) 6 CONSUMER · Encourage longer use of functional products 	3	REPAIR	
 5 RE-USE Design for disassembly.) 6 CONSUMER - Encourage longer use of functional products 	4	SPECIFY /	 Harmonize lifetime assessment protocols for efficiency
Encourage longer use of functional products	5	RE-USE	
	6		 Encourage longer use of functional products.

valspar Materials Coatings Enable Longer Lifetimes

1806

Clipper ships strengthen international trade thanks to wood varnish

1920s

Beer available in coated cans

The Spirit of St. Louis first nonstop cross-Atlantic flight

1940s

Water-

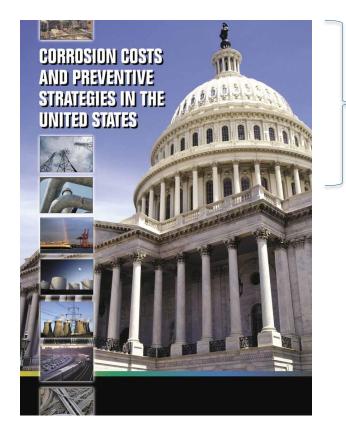
based

paints

1960s

Automotive and heavy machinery powder coatings

1990s


Cathodic epoxy electro-coat

Highly durable coatings Lower film weights

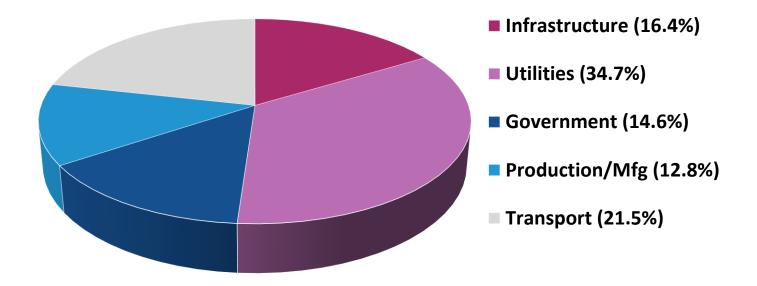
2000s

Smart and environmentally favorable coatings

Corrosion Limits Lifetimes

valspar MATERIALS

PUBLICATION NO. FHWA-RD-01-156, 2002


"... the total annual estimated direct cost of corrosion in the U.S. is a staggering \$276 B — approximately 3.1% of the nation's GDP."

.... 25 to 30% of annual corrosion costs ... could be saved if optimum corrosion management practices were employed."

In 2012, the U.S. Department of Defense estimated that corrosion costs for the military were \$20.9 billion annually.

Ted Bates, a technical Fellow at Boeing, says corrosion has become more of a problem because of the military's decision to <u>extend</u> the life of aging aircraft.

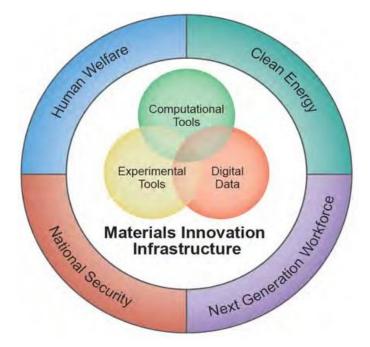
valspar MATERIALS \$276 B Cost of Corrosion in US

Conclusions

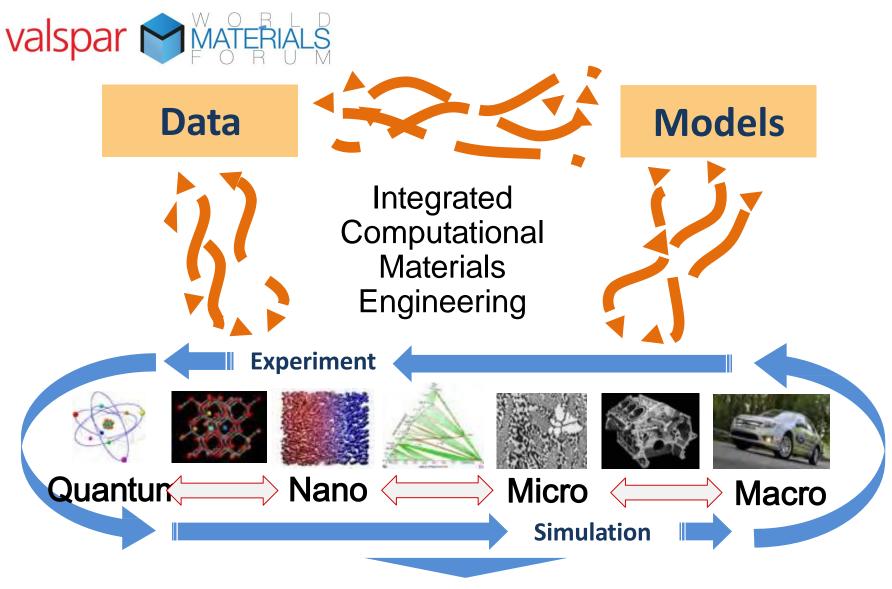
- Implement advanced design practices for better corrosion management
- Develop advanced life-prediction and performance-assessment methods
- Improve corrosion technology through research, development, and implementation

valspar MATERIALS Lifetime Prediction Challenges

- OEM specification tests are a critical part of materials development
 - Based on long-standing conventions with historical experience
 - Designed to replicate actual service environment
- The test protocols present challenges
 - Widely different test conditions
 - Time consuming and expensive test equipment
 - Highly variable test results
- Results do not correlate with real world results
 - Based on worst case scenarios (extreme versus actual conditions) therefore actual lifetimes are likely longer than estimated
- Vast amount of data not statistically analyzed -> few robust models


- Current coatings technologies can likely be used longer to safely protect from corrosion ... but how much longer?
- Value of improvements can be assessed by relative comparisions to historical results from existing test protocols
- Longer lifetime requirements, extreme service conditions and new technologies pose serious risks
 - Options to reduce risk are to evaluate in (simulated) service long term and / or develop new accelerated protocols and / or models

Improved protocols and models would accelerate product development time, guide lifetime improvements and reduce risk of using new technologies



Materials Genome Initiative

- An approach to leverage very large amount of materials data
- Initiated in 2011 by President Obama
- Mission to decrease time to market by 50% and << \$\$.
- Similar recommendations by European Science Foundation.

From James Warren, National Institute of Standards & Technology

Materials with Targeted Properties

From James Warren, NIST

- TAKE THE LHC AS AN EXAMPLE
- DATA PRODUCED AT 1PB per SEC!
- REDUCED DATA SAVED ~ GB/S
- THAT'S A GOOD MODEL
- OTHER END BIOLOGY?
- MATERIALS IN THE MIDDLE

BETTER MODELS = LESS DATA

What should we be doing?

Science is characterized by the iteration of experiment and models, yielding higher fidelity with higher certainty.

- The measurement or computation of a quantity (data) is generally meaningless without the associated quantifying model that defines both the data and its uncertainties.
- Thus dissemination of data is ideally the dissemination of the following information:
 - 1. Measured quantities
 - 2. Associated quantifying models and
 - 3. Raw data, including protocols (and equipment) by which it was obtained

	Re	producibility Spectr	rum		
	Publication +				
Publication only	Code	Code and data	Linked and executable code and data	Full replication	
Not reproducible	Ç			Gold standard	

From James Warren, NIST

Refer to: R. Peng *Science* 2 Dec 2011: 1226-1227

Materials Genome Initiative: Validated Integration

Computational Tools

What?

- Data dissemination
- Data capture
- Insights

How to achieve:

- Materials data repository
- Shared knowledge representation
- Workflow tools
- Metadata standards

Co-Deign

Capture & Analysis

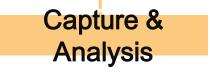
Experimental Tools

What?

- Analysis
- Data infrastructure
- Methods & Measurements

How to achieve:

- Automated capture
- Computational quality metrics & data-driven materials science
- Machine learning
- Exp design: new models best practice guides


Experimental Tools

What?

- Software
- Data infrastructure
- Hardware

How to achieve:

- Software catalogs & workflow tools
- Computational quality metrics & data-driven materials science
- Ingest & auto capture
- Best practices

from from James Warren, NIST

valspar Materials Decision Framework

- Goals and approach of Materials Genome Initiative compelling
 - Data type and structure not prescribed and voluntary vs structured, agreed data taxonomy ... how to get stakeholder buy-in?
- Use lifetime assessment protocols and models in framework to decide upon best options for materials efficiency
 - Examples of trade-offs to extend lifetime
 - A. More durable materials vs increase cost, e.g., civil infrastructure
 - B. Materials of concern vs longer lifetime, e.g., metal packaging BPA-containing epoxy coatings, chrome-based anti-corrosion coatings
 - C. Use of different / new materials vs long term service history and / or validated qualification protocols, e.g., new alloys and composites
 - Evaluate against other options to improve materials efficiency, e.g., lifetime extension vs. recycling
- Proposed framework: Residence time in economy / cost to replace, cost and risk of new approaches to improve materials efficiency

valspar Materials Residence Time in Economy

SHORT LIFETIME

MEDIUM LIFETIME

LONG LIFETIME

Months

Years

Decades

- Packaging: short residence time and low cost to replace
- Little value to improve lifetime
- Recycle options critical
- Recent improvements to remove materials of concern

- Industrial equipment & infrastructure: longer residence, high cost to replace, greater risk
- More value for lifetime extension options, cost
- Risk reduction through good protocols and models

 can't practically test new technologies over a
 lifetime